LambdaSuperRes / KAIR /main_test_swinir.py
cooperll
LambdaSuperRes initial commit
2514fb4
import argparse
import cv2
import glob
import numpy as np
from collections import OrderedDict
import os
import torch
import requests
from pathlib import Path
from models.network_swinir import SwinIR as net
from utils import utils_image as util
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default='color_dn', help='classical_sr, lightweight_sr, real_sr, '
'gray_dn, color_dn, jpeg_car')
parser.add_argument('--scale', type=int, default=1, help='scale factor: 1, 2, 3, 4, 8') # 1 for dn and jpeg car
parser.add_argument('--noise', type=int, default=15, help='noise level: 15, 25, 50')
parser.add_argument('--jpeg', type=int, default=40, help='scale factor: 10, 20, 30, 40')
parser.add_argument('--training_patch_size', type=int, default=128, help='patch size used in training SwinIR. '
'Just used to differentiate two different settings in Table 2 of the paper. '
'Images are NOT tested patch by patch.')
parser.add_argument('--large_model', action='store_true', help='use large model, only provided for real image sr')
parser.add_argument('--model_path', type=str,
default='model_zoo/swinir/001_classicalSR_DIV2K_s48w8_SwinIR-M_x2.pth')
parser.add_argument('--folder_lq', type=str, default=None, help='input low-quality test image folder')
parser.add_argument('--folder_gt', type=str, default=None, help='input ground-truth test image folder')
parser.add_argument('--tile', type=int, default=None, help='Tile size, None for no tile during testing (testing as a whole)')
parser.add_argument('--tile_overlap', type=int, default=32, help='Overlapping of different tiles')
args = parser.parse_args()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# set up model
if os.path.exists(args.model_path):
print(f'loading model from {args.model_path}')
else:
os.makedirs(os.path.dirname(args.model_path), exist_ok=True)
url = 'https://github.com/JingyunLiang/SwinIR/releases/download/v0.0/{}'.format(os.path.basename(args.model_path))
r = requests.get(url, allow_redirects=True)
print(f'downloading model {args.model_path}')
open(args.model_path, 'wb').write(r.content)
model = define_model(args)
model.eval()
model = model.to(device)
# setup folder and path
folder, save_dir, border, window_size = setup(args)
os.makedirs(save_dir, exist_ok=True)
test_results = OrderedDict()
test_results['psnr'] = []
test_results['ssim'] = []
test_results['psnr_y'] = []
test_results['ssim_y'] = []
test_results['psnr_b'] = []
psnr, ssim, psnr_y, ssim_y, psnr_b = 0, 0, 0, 0, 0
task = "real_sr"
img_gt = None
for idx, path in enumerate(sorted(glob.glob(os.path.join(folder, '*')))):
# read image
(imgname, imgext) = os.path.splitext(os.path.basename(path))
# out_imgname = Path(f'/home/cll/Desktop/WillemDafoe/swinIRx2_aligned/{imgname}_SwinIR.png')
# if out_imgname.exists():
# print("Skipping: ", str(out_imgname))
# continue
try:
img_lq, img_gt = get_image_pair(args, path, task) # image to HWC-BGR, float32
except AttributeError as e:
print(f"ValueError received: {e}")
continue
img_lq = np.transpose(img_lq if img_lq.shape[2] == 1 else img_lq[:, :, [2, 1, 0]], (2, 0, 1)) # HCW-BGR to CHW-RGB
img_lq = torch.from_numpy(img_lq).float().unsqueeze(0).to(device) # CHW-RGB to NCHW-RGB
# inference
with torch.no_grad():
# pad input image to be a multiple of window_size
_, _, h_old, w_old = img_lq.size()
h_pad = (h_old // window_size + 1) * window_size - h_old
w_pad = (w_old // window_size + 1) * window_size - w_old
img_lq = torch.cat([img_lq, torch.flip(img_lq, [2])], 2)[:, :, :h_old + h_pad, :]
img_lq = torch.cat([img_lq, torch.flip(img_lq, [3])], 3)[:, :, :, :w_old + w_pad]
output = test(img_lq, model, args, window_size)
output = output[..., :h_old * args.scale, :w_old * args.scale]
# save image
output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy()
if output.ndim == 3:
output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0)) # CHW-RGB to HCW-BGR
output = (output * 255.0).round().astype(np.uint8) # float32 to uint8
print("SAVING: ", save_dir)
print("SAVING: ", imgname)
cv2.imwrite(f'{save_dir}/{imgname}_SwinIR.png', output)
# evaluate psnr/ssim/psnr_b
if img_gt is not None:
img_gt = (img_gt * 255.0).round().astype(np.uint8) # float32 to uint8
img_gt = img_gt[:h_old * args.scale, :w_old * args.scale, ...] # crop gt
img_gt = np.squeeze(img_gt)
psnr = util.calculate_psnr(output, img_gt, border=border)
ssim = util.calculate_ssim(output, img_gt, border=border)
test_results['psnr'].append(psnr)
test_results['ssim'].append(ssim)
if img_gt.ndim == 3: # RGB image
output_y = util.bgr2ycbcr(output.astype(np.float32) / 255.) * 255.
img_gt_y = util.bgr2ycbcr(img_gt.astype(np.float32) / 255.) * 255.
psnr_y = util.calculate_psnr(output_y, img_gt_y, border=border)
ssim_y = util.calculate_ssim(output_y, img_gt_y, border=border)
test_results['psnr_y'].append(psnr_y)
test_results['ssim_y'].append(ssim_y)
if args.task in ['jpeg_car']:
psnr_b = util.calculate_psnrb(output, img_gt, border=border)
test_results['psnr_b'].append(psnr_b)
print('Testing {:d} {:20s} - PSNR: {:.2f} dB; SSIM: {:.4f}; '
'PSNR_Y: {:.2f} dB; SSIM_Y: {:.4f}; '
'PSNR_B: {:.2f} dB.'.
format(idx, imgname, psnr, ssim, psnr_y, ssim_y, psnr_b))
else:
print('Testing {:d} {:20s}'.format(idx, imgname))
# summarize psnr/ssim
if img_gt is not None:
ave_psnr = sum(test_results['psnr']) / len(test_results['psnr'])
ave_ssim = sum(test_results['ssim']) / len(test_results['ssim'])
print('\n{} \n-- Average PSNR/SSIM(RGB): {:.2f} dB; {:.4f}'.format(save_dir, ave_psnr, ave_ssim))
if img_gt.ndim == 3:
ave_psnr_y = sum(test_results['psnr_y']) / len(test_results['psnr_y'])
ave_ssim_y = sum(test_results['ssim_y']) / len(test_results['ssim_y'])
print('-- Average PSNR_Y/SSIM_Y: {:.2f} dB; {:.4f}'.format(ave_psnr_y, ave_ssim_y))
if args.task in ['jpeg_car']:
ave_psnr_b = sum(test_results['psnr_b']) / len(test_results['psnr_b'])
print('-- Average PSNR_B: {:.2f} dB'.format(ave_psnr_b))
def define_model(args):
# 001 classical image sr
if args.task == 'classical_sr':
model = net(upscale=args.scale, in_chans=3, img_size=args.training_patch_size, window_size=8,
img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6],
mlp_ratio=2, upsampler='pixelshuffle', resi_connection='1conv')
param_key_g = 'params'
# 002 lightweight image sr
# use 'pixelshuffledirect' to save parameters
elif args.task == 'lightweight_sr':
model = net(upscale=args.scale, in_chans=3, img_size=64, window_size=8,
img_range=1., depths=[6, 6, 6, 6], embed_dim=60, num_heads=[6, 6, 6, 6],
mlp_ratio=2, upsampler='pixelshuffledirect', resi_connection='1conv')
param_key_g = 'params'
# 003 real-world image sr
elif args.task == 'real_sr':
if not args.large_model:
# use 'nearest+conv' to avoid block artifacts
model = net(upscale=args.scale, in_chans=3, img_size=args.training_patch_size, window_size=8,
img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6],
mlp_ratio=2, upsampler='nearest+conv', resi_connection='3conv')
else:
# larger model size; use '3conv' to save parameters and memory; use ema for GAN training
model = net(upscale=4, in_chans=3, img_size=64, window_size=8,
img_range=1., depths=[6, 6, 6, 6, 6, 6, 6, 6, 6], embed_dim=240,
num_heads=[8, 8, 8, 8, 8, 8, 8, 8, 8],
mlp_ratio=2, upsampler='nearest+conv', resi_connection='3conv')
param_key_g = 'params_ema'
# 004 grayscale image denoising
elif args.task == 'gray_dn':
model = net(upscale=1, in_chans=1, img_size=128, window_size=8,
img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6],
mlp_ratio=2, upsampler='', resi_connection='1conv')
param_key_g = 'params'
# 005 color image denoising
elif args.task == 'color_dn':
model = net(upscale=1, in_chans=3, img_size=128, window_size=8,
img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6],
mlp_ratio=2, upsampler='', resi_connection='1conv')
param_key_g = 'params'
# 006 JPEG compression artifact reduction
# use window_size=7 because JPEG encoding uses 8x8; use img_range=255 because it's sligtly better than 1
elif args.task == 'jpeg_car':
model = net(upscale=1, in_chans=1, img_size=126, window_size=7,
img_range=255., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6],
mlp_ratio=2, upsampler='', resi_connection='1conv')
param_key_g = 'params'
pretrained_model = torch.load(args.model_path)
model.load_state_dict(pretrained_model[param_key_g] if param_key_g in pretrained_model.keys() else pretrained_model, strict=True)
return model
def setup(args):
# 001 classical image sr/ 002 lightweight image sr
if args.task in ['classical_sr', 'lightweight_sr']:
save_dir = f'results/swinir_{args.task}_x{args.scale}'
# folder = args.folder_gt
folder = args.folder_lq
border = args.scale
window_size = 8
# 003 real-world image sr
elif args.task in ['real_sr']:
save_dir = f'results/swinir_{args.task}_x{args.scale}'
if args.large_model:
save_dir += '_large'
folder = args.folder_lq
border = 0
window_size = 8
# 004 grayscale image denoising/ 005 color image denoising
elif args.task in ['gray_dn', 'color_dn']:
save_dir = f'results/swinir_{args.task}_noise{args.noise}'
folder = args.folder_gt
border = 0
window_size = 8
# 006 JPEG compression artifact reduction
elif args.task in ['jpeg_car']:
save_dir = f'results/swinir_{args.task}_jpeg{args.jpeg}'
folder = args.folder_gt
border = 0
window_size = 7
return folder, save_dir, border, window_size
def get_image_pair(args, path, task):
(imgname, imgext) = os.path.splitext(os.path.basename(path))
# 001 classical image sr/ 002 lightweight image sr (load lq-gt image pairs)
if task in ['classical_sr', 'lightweight_sr']:
img_gt = cv2.imread(path, cv2.IMREAD_COLOR).astype(np.float32) / 255.
img_lq = cv2.imread(f'{args.folder_lq}/{imgname}x{args.scale}{imgext}', cv2.IMREAD_COLOR).astype(
np.float32) / 255.
# 003 real-world image sr (load lq image only)
elif task in ['real_sr']:
img_gt = None
img_lq = cv2.imread(path, cv2.IMREAD_COLOR).astype(np.float32) / 255.
# 004 grayscale image denoising (load gt image and generate lq image on-the-fly)
elif task in ['gray_dn']:
img_gt = cv2.imread(path, cv2.IMREAD_GRAYSCALE).astype(np.float32) / 255.
np.random.seed(seed=0)
img_lq = img_gt + np.random.normal(0, args.noise / 255., img_gt.shape)
img_gt = np.expand_dims(img_gt, axis=2)
img_lq = np.expand_dims(img_lq, axis=2)
# 005 color image denoising (load gt image and generate lq image on-the-fly)
elif task in ['color_dn']:
img_gt = cv2.imread(path, cv2.IMREAD_COLOR).astype(np.float32) / 255.
np.random.seed(seed=0)
img_lq = img_gt + np.random.normal(0, args.noise / 255., img_gt.shape)
# 006 JPEG compression artifact reduction (load gt image and generate lq image on-the-fly)
elif task in ['jpeg_car']:
img_gt = cv2.imread(path, 0)
result, encimg = cv2.imencode('.jpg', img_gt, [int(cv2.IMWRITE_JPEG_QUALITY), args.jpeg])
img_lq = cv2.imdecode(encimg, 0)
img_gt = np.expand_dims(img_gt, axis=2).astype(np.float32) / 255.
img_lq = np.expand_dims(img_lq, axis=2).astype(np.float32) / 255.
return img_lq, img_gt
def test(img_lq, model, args, window_size):
if args.tile is None:
# test the image as a whole
output = model(img_lq)
else:
# test the image tile by tile
b, c, h, w = img_lq.size()
tile = min(args.tile, h, w)
assert tile % window_size == 0, "tile size should be a multiple of window_size"
tile_overlap = args.tile_overlap
sf = args.scale
print(tile)
stride = tile - tile_overlap
h_idx_list = list(range(0, h-tile, stride)) + [h-tile]
w_idx_list = list(range(0, w-tile, stride)) + [w-tile]
E = torch.zeros(b, c, h*sf, w*sf).type_as(img_lq)
W = torch.zeros_like(E)
for h_idx in h_idx_list:
for w_idx in w_idx_list:
in_patch = img_lq[..., h_idx:h_idx+tile, w_idx:w_idx+tile]
out_patch = model(in_patch)
out_patch_mask = torch.ones_like(out_patch)
E[..., h_idx*sf:(h_idx+tile)*sf, w_idx*sf:(w_idx+tile)*sf].add_(out_patch)
W[..., h_idx*sf:(h_idx+tile)*sf, w_idx*sf:(w_idx+tile)*sf].add_(out_patch_mask)
output = E.div_(W)
return output
if __name__ == '__main__':
main()