Spaces:
Running
Running
import argparse | |
import cv2 | |
import glob | |
import numpy as np | |
from collections import OrderedDict | |
import os | |
import torch | |
import requests | |
from pathlib import Path | |
from models.network_swinir import SwinIR as net | |
from utils import utils_image as util | |
def main(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--task', type=str, default='color_dn', help='classical_sr, lightweight_sr, real_sr, ' | |
'gray_dn, color_dn, jpeg_car') | |
parser.add_argument('--scale', type=int, default=1, help='scale factor: 1, 2, 3, 4, 8') # 1 for dn and jpeg car | |
parser.add_argument('--noise', type=int, default=15, help='noise level: 15, 25, 50') | |
parser.add_argument('--jpeg', type=int, default=40, help='scale factor: 10, 20, 30, 40') | |
parser.add_argument('--training_patch_size', type=int, default=128, help='patch size used in training SwinIR. ' | |
'Just used to differentiate two different settings in Table 2 of the paper. ' | |
'Images are NOT tested patch by patch.') | |
parser.add_argument('--large_model', action='store_true', help='use large model, only provided for real image sr') | |
parser.add_argument('--model_path', type=str, | |
default='model_zoo/swinir/001_classicalSR_DIV2K_s48w8_SwinIR-M_x2.pth') | |
parser.add_argument('--folder_lq', type=str, default=None, help='input low-quality test image folder') | |
parser.add_argument('--folder_gt', type=str, default=None, help='input ground-truth test image folder') | |
parser.add_argument('--tile', type=int, default=None, help='Tile size, None for no tile during testing (testing as a whole)') | |
parser.add_argument('--tile_overlap', type=int, default=32, help='Overlapping of different tiles') | |
args = parser.parse_args() | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
# set up model | |
if os.path.exists(args.model_path): | |
print(f'loading model from {args.model_path}') | |
else: | |
os.makedirs(os.path.dirname(args.model_path), exist_ok=True) | |
url = 'https://github.com/JingyunLiang/SwinIR/releases/download/v0.0/{}'.format(os.path.basename(args.model_path)) | |
r = requests.get(url, allow_redirects=True) | |
print(f'downloading model {args.model_path}') | |
open(args.model_path, 'wb').write(r.content) | |
model = define_model(args) | |
model.eval() | |
model = model.to(device) | |
# setup folder and path | |
folder, save_dir, border, window_size = setup(args) | |
os.makedirs(save_dir, exist_ok=True) | |
test_results = OrderedDict() | |
test_results['psnr'] = [] | |
test_results['ssim'] = [] | |
test_results['psnr_y'] = [] | |
test_results['ssim_y'] = [] | |
test_results['psnr_b'] = [] | |
psnr, ssim, psnr_y, ssim_y, psnr_b = 0, 0, 0, 0, 0 | |
task = "real_sr" | |
img_gt = None | |
for idx, path in enumerate(sorted(glob.glob(os.path.join(folder, '*')))): | |
# read image | |
(imgname, imgext) = os.path.splitext(os.path.basename(path)) | |
# out_imgname = Path(f'/home/cll/Desktop/WillemDafoe/swinIRx2_aligned/{imgname}_SwinIR.png') | |
# if out_imgname.exists(): | |
# print("Skipping: ", str(out_imgname)) | |
# continue | |
try: | |
img_lq, img_gt = get_image_pair(args, path, task) # image to HWC-BGR, float32 | |
except AttributeError as e: | |
print(f"ValueError received: {e}") | |
continue | |
img_lq = np.transpose(img_lq if img_lq.shape[2] == 1 else img_lq[:, :, [2, 1, 0]], (2, 0, 1)) # HCW-BGR to CHW-RGB | |
img_lq = torch.from_numpy(img_lq).float().unsqueeze(0).to(device) # CHW-RGB to NCHW-RGB | |
# inference | |
with torch.no_grad(): | |
# pad input image to be a multiple of window_size | |
_, _, h_old, w_old = img_lq.size() | |
h_pad = (h_old // window_size + 1) * window_size - h_old | |
w_pad = (w_old // window_size + 1) * window_size - w_old | |
img_lq = torch.cat([img_lq, torch.flip(img_lq, [2])], 2)[:, :, :h_old + h_pad, :] | |
img_lq = torch.cat([img_lq, torch.flip(img_lq, [3])], 3)[:, :, :, :w_old + w_pad] | |
output = test(img_lq, model, args, window_size) | |
output = output[..., :h_old * args.scale, :w_old * args.scale] | |
# save image | |
output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy() | |
if output.ndim == 3: | |
output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0)) # CHW-RGB to HCW-BGR | |
output = (output * 255.0).round().astype(np.uint8) # float32 to uint8 | |
print("SAVING: ", save_dir) | |
print("SAVING: ", imgname) | |
cv2.imwrite(f'{save_dir}/{imgname}_SwinIR.png', output) | |
# evaluate psnr/ssim/psnr_b | |
if img_gt is not None: | |
img_gt = (img_gt * 255.0).round().astype(np.uint8) # float32 to uint8 | |
img_gt = img_gt[:h_old * args.scale, :w_old * args.scale, ...] # crop gt | |
img_gt = np.squeeze(img_gt) | |
psnr = util.calculate_psnr(output, img_gt, border=border) | |
ssim = util.calculate_ssim(output, img_gt, border=border) | |
test_results['psnr'].append(psnr) | |
test_results['ssim'].append(ssim) | |
if img_gt.ndim == 3: # RGB image | |
output_y = util.bgr2ycbcr(output.astype(np.float32) / 255.) * 255. | |
img_gt_y = util.bgr2ycbcr(img_gt.astype(np.float32) / 255.) * 255. | |
psnr_y = util.calculate_psnr(output_y, img_gt_y, border=border) | |
ssim_y = util.calculate_ssim(output_y, img_gt_y, border=border) | |
test_results['psnr_y'].append(psnr_y) | |
test_results['ssim_y'].append(ssim_y) | |
if args.task in ['jpeg_car']: | |
psnr_b = util.calculate_psnrb(output, img_gt, border=border) | |
test_results['psnr_b'].append(psnr_b) | |
print('Testing {:d} {:20s} - PSNR: {:.2f} dB; SSIM: {:.4f}; ' | |
'PSNR_Y: {:.2f} dB; SSIM_Y: {:.4f}; ' | |
'PSNR_B: {:.2f} dB.'. | |
format(idx, imgname, psnr, ssim, psnr_y, ssim_y, psnr_b)) | |
else: | |
print('Testing {:d} {:20s}'.format(idx, imgname)) | |
# summarize psnr/ssim | |
if img_gt is not None: | |
ave_psnr = sum(test_results['psnr']) / len(test_results['psnr']) | |
ave_ssim = sum(test_results['ssim']) / len(test_results['ssim']) | |
print('\n{} \n-- Average PSNR/SSIM(RGB): {:.2f} dB; {:.4f}'.format(save_dir, ave_psnr, ave_ssim)) | |
if img_gt.ndim == 3: | |
ave_psnr_y = sum(test_results['psnr_y']) / len(test_results['psnr_y']) | |
ave_ssim_y = sum(test_results['ssim_y']) / len(test_results['ssim_y']) | |
print('-- Average PSNR_Y/SSIM_Y: {:.2f} dB; {:.4f}'.format(ave_psnr_y, ave_ssim_y)) | |
if args.task in ['jpeg_car']: | |
ave_psnr_b = sum(test_results['psnr_b']) / len(test_results['psnr_b']) | |
print('-- Average PSNR_B: {:.2f} dB'.format(ave_psnr_b)) | |
def define_model(args): | |
# 001 classical image sr | |
if args.task == 'classical_sr': | |
model = net(upscale=args.scale, in_chans=3, img_size=args.training_patch_size, window_size=8, | |
img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6], | |
mlp_ratio=2, upsampler='pixelshuffle', resi_connection='1conv') | |
param_key_g = 'params' | |
# 002 lightweight image sr | |
# use 'pixelshuffledirect' to save parameters | |
elif args.task == 'lightweight_sr': | |
model = net(upscale=args.scale, in_chans=3, img_size=64, window_size=8, | |
img_range=1., depths=[6, 6, 6, 6], embed_dim=60, num_heads=[6, 6, 6, 6], | |
mlp_ratio=2, upsampler='pixelshuffledirect', resi_connection='1conv') | |
param_key_g = 'params' | |
# 003 real-world image sr | |
elif args.task == 'real_sr': | |
if not args.large_model: | |
# use 'nearest+conv' to avoid block artifacts | |
model = net(upscale=args.scale, in_chans=3, img_size=args.training_patch_size, window_size=8, | |
img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6], | |
mlp_ratio=2, upsampler='nearest+conv', resi_connection='3conv') | |
else: | |
# larger model size; use '3conv' to save parameters and memory; use ema for GAN training | |
model = net(upscale=4, in_chans=3, img_size=64, window_size=8, | |
img_range=1., depths=[6, 6, 6, 6, 6, 6, 6, 6, 6], embed_dim=240, | |
num_heads=[8, 8, 8, 8, 8, 8, 8, 8, 8], | |
mlp_ratio=2, upsampler='nearest+conv', resi_connection='3conv') | |
param_key_g = 'params_ema' | |
# 004 grayscale image denoising | |
elif args.task == 'gray_dn': | |
model = net(upscale=1, in_chans=1, img_size=128, window_size=8, | |
img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6], | |
mlp_ratio=2, upsampler='', resi_connection='1conv') | |
param_key_g = 'params' | |
# 005 color image denoising | |
elif args.task == 'color_dn': | |
model = net(upscale=1, in_chans=3, img_size=128, window_size=8, | |
img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6], | |
mlp_ratio=2, upsampler='', resi_connection='1conv') | |
param_key_g = 'params' | |
# 006 JPEG compression artifact reduction | |
# use window_size=7 because JPEG encoding uses 8x8; use img_range=255 because it's sligtly better than 1 | |
elif args.task == 'jpeg_car': | |
model = net(upscale=1, in_chans=1, img_size=126, window_size=7, | |
img_range=255., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6], | |
mlp_ratio=2, upsampler='', resi_connection='1conv') | |
param_key_g = 'params' | |
pretrained_model = torch.load(args.model_path) | |
model.load_state_dict(pretrained_model[param_key_g] if param_key_g in pretrained_model.keys() else pretrained_model, strict=True) | |
return model | |
def setup(args): | |
# 001 classical image sr/ 002 lightweight image sr | |
if args.task in ['classical_sr', 'lightweight_sr']: | |
save_dir = f'results/swinir_{args.task}_x{args.scale}' | |
# folder = args.folder_gt | |
folder = args.folder_lq | |
border = args.scale | |
window_size = 8 | |
# 003 real-world image sr | |
elif args.task in ['real_sr']: | |
save_dir = f'results/swinir_{args.task}_x{args.scale}' | |
if args.large_model: | |
save_dir += '_large' | |
folder = args.folder_lq | |
border = 0 | |
window_size = 8 | |
# 004 grayscale image denoising/ 005 color image denoising | |
elif args.task in ['gray_dn', 'color_dn']: | |
save_dir = f'results/swinir_{args.task}_noise{args.noise}' | |
folder = args.folder_gt | |
border = 0 | |
window_size = 8 | |
# 006 JPEG compression artifact reduction | |
elif args.task in ['jpeg_car']: | |
save_dir = f'results/swinir_{args.task}_jpeg{args.jpeg}' | |
folder = args.folder_gt | |
border = 0 | |
window_size = 7 | |
return folder, save_dir, border, window_size | |
def get_image_pair(args, path, task): | |
(imgname, imgext) = os.path.splitext(os.path.basename(path)) | |
# 001 classical image sr/ 002 lightweight image sr (load lq-gt image pairs) | |
if task in ['classical_sr', 'lightweight_sr']: | |
img_gt = cv2.imread(path, cv2.IMREAD_COLOR).astype(np.float32) / 255. | |
img_lq = cv2.imread(f'{args.folder_lq}/{imgname}x{args.scale}{imgext}', cv2.IMREAD_COLOR).astype( | |
np.float32) / 255. | |
# 003 real-world image sr (load lq image only) | |
elif task in ['real_sr']: | |
img_gt = None | |
img_lq = cv2.imread(path, cv2.IMREAD_COLOR).astype(np.float32) / 255. | |
# 004 grayscale image denoising (load gt image and generate lq image on-the-fly) | |
elif task in ['gray_dn']: | |
img_gt = cv2.imread(path, cv2.IMREAD_GRAYSCALE).astype(np.float32) / 255. | |
np.random.seed(seed=0) | |
img_lq = img_gt + np.random.normal(0, args.noise / 255., img_gt.shape) | |
img_gt = np.expand_dims(img_gt, axis=2) | |
img_lq = np.expand_dims(img_lq, axis=2) | |
# 005 color image denoising (load gt image and generate lq image on-the-fly) | |
elif task in ['color_dn']: | |
img_gt = cv2.imread(path, cv2.IMREAD_COLOR).astype(np.float32) / 255. | |
np.random.seed(seed=0) | |
img_lq = img_gt + np.random.normal(0, args.noise / 255., img_gt.shape) | |
# 006 JPEG compression artifact reduction (load gt image and generate lq image on-the-fly) | |
elif task in ['jpeg_car']: | |
img_gt = cv2.imread(path, 0) | |
result, encimg = cv2.imencode('.jpg', img_gt, [int(cv2.IMWRITE_JPEG_QUALITY), args.jpeg]) | |
img_lq = cv2.imdecode(encimg, 0) | |
img_gt = np.expand_dims(img_gt, axis=2).astype(np.float32) / 255. | |
img_lq = np.expand_dims(img_lq, axis=2).astype(np.float32) / 255. | |
return img_lq, img_gt | |
def test(img_lq, model, args, window_size): | |
if args.tile is None: | |
# test the image as a whole | |
output = model(img_lq) | |
else: | |
# test the image tile by tile | |
b, c, h, w = img_lq.size() | |
tile = min(args.tile, h, w) | |
assert tile % window_size == 0, "tile size should be a multiple of window_size" | |
tile_overlap = args.tile_overlap | |
sf = args.scale | |
print(tile) | |
stride = tile - tile_overlap | |
h_idx_list = list(range(0, h-tile, stride)) + [h-tile] | |
w_idx_list = list(range(0, w-tile, stride)) + [w-tile] | |
E = torch.zeros(b, c, h*sf, w*sf).type_as(img_lq) | |
W = torch.zeros_like(E) | |
for h_idx in h_idx_list: | |
for w_idx in w_idx_list: | |
in_patch = img_lq[..., h_idx:h_idx+tile, w_idx:w_idx+tile] | |
out_patch = model(in_patch) | |
out_patch_mask = torch.ones_like(out_patch) | |
E[..., h_idx*sf:(h_idx+tile)*sf, w_idx*sf:(w_idx+tile)*sf].add_(out_patch) | |
W[..., h_idx*sf:(h_idx+tile)*sf, w_idx*sf:(w_idx+tile)*sf].add_(out_patch_mask) | |
output = E.div_(W) | |
return output | |
if __name__ == '__main__': | |
main() | |