{ "task": "swinir_sr_lightweight_x2" // classical image sr for x2/x3/x4. root/task/images-models-options , "model": "plain" // "plain" | "plain2" if two inputs , "gpu_ids": [0,1,2,3,4,5,6,7] , "dist": true , "scale": 2 // 2 | 3 | 4 , "n_channels": 3 // broadcast to "datasets", 1 for grayscale, 3 for color , "path": { "root": "superresolution" // "denoising" | "superresolution" | "dejpeg" , "pretrained_netG": null // path of pretrained model. We fine-tune X3/X4 models from X2 model, so that `G_optimizer_lr` and `G_scheduler_milestones` can be halved to save time. , "pretrained_netE": null // path of pretrained model } , "datasets": { "train": { "name": "train_dataset" // just name , "dataset_type": "sr" // "dncnn" | "dnpatch" | "fdncnn" | "ffdnet" | "sr" | "srmd" | "dpsr" | "plain" | "plainpatch" | "jpeg" , "dataroot_H": "trainsets/trainH"// path of H training dataset. DIV2K (800 training images) , "dataroot_L": "trainsets/trainL" // path of L training dataset , "H_size": 128 // 128/192/256/512. , "dataloader_shuffle": true , "dataloader_num_workers": 16 , "dataloader_batch_size": 64 // Total batch size =8x8=64 in SwinIR } , "test": { "name": "test_dataset" // just name , "dataset_type": "sr" // "dncnn" | "dnpatch" | "fdncnn" | "ffdnet" | "sr" | "srmd" | "dpsr" | "plain" | "plainpatch" | "jpeg" , "dataroot_H": "testsets/Set5/HR" // path of H testing dataset , "dataroot_L": "testsets/Set5/LR_bicubic/X2" // path of L testing dataset } } , "netG": { "net_type": "swinir" , "upscale": 2 // 2 | 3 | 4 , "in_chans": 3 , "img_size": 64 , "window_size": 8 , "img_range": 1.0 , "depths": [6, 6, 6, 6] , "embed_dim": 60 , "num_heads": [6, 6, 6, 6] , "mlp_ratio": 2 , "upsampler": "pixelshuffledirect" // "pixelshuffle" | "pixelshuffledirect" | "nearest+conv" | null , "resi_connection": "1conv" // "1conv" | "3conv" , "init_type": "default" } , "train": { "G_lossfn_type": "l1" // "l1" preferred | "l2sum" | "l2" | "ssim" | "charbonnier" , "G_lossfn_weight": 1.0 // default , "E_decay": 0.999 // Exponential Moving Average for netG: set 0 to disable; default setting 0.999 , "G_optimizer_type": "adam" // fixed, adam is enough , "G_optimizer_lr": 2e-4 // learning rate , "G_optimizer_wd": 0 // weight decay, default 0 , "G_optimizer_clipgrad": null // unused , "G_optimizer_reuse": true // , "G_scheduler_type": "MultiStepLR" // "MultiStepLR" is enough , "G_scheduler_milestones": [250000, 400000, 450000, 475000, 500000] , "G_scheduler_gamma": 0.5 , "G_regularizer_orthstep": null // unused , "G_regularizer_clipstep": null // unused , "G_param_strict": true , "E_param_strict": true , "checkpoint_test": 5000 // for testing , "checkpoint_save": 5000 // for saving model , "checkpoint_print": 200 // for print } }