## Training and testing codes for USRNet, DnCNN, FFDNet, SRMD, DPSR, MSRResNet, ESRGAN, BSRGAN, SwinIR, VRT [![download](https://img.shields.io/github/downloads/cszn/KAIR/total.svg)](https://github.com/cszn/KAIR/releases) ![visitors](https://visitor-badge.glitch.me/badge?page_id=cszn/KAIR) [Kai Zhang](https://cszn.github.io/) *[Computer Vision Lab](https://vision.ee.ethz.ch/the-institute.html), ETH Zurich, Switzerland* _______ - **_News (2022-02-15)_**: We release [the training codes](https://github.com/cszn/KAIR/blob/master/docs/README_VRT.md) of [VRT ![GitHub Stars](https://img.shields.io/github/stars/JingyunLiang/VRT?style=social)](https://github.com/JingyunLiang/VRT) for video SR, deblurring and denoising.

- **_News (2021-12-23)_**: Our techniques are adopted in [https://www.amemori.ai/](https://www.amemori.ai/). - **_News (2021-12-23)_**: Our new work for practical image denoising. - - [](https://imgsli.com/ODczMTc) [](https://imgsli.com/ODczMTY) - **_News (2021-09-09)_**: Add [main_download_pretrained_models.py](https://github.com/cszn/KAIR/blob/master/main_download_pretrained_models.py) to download pre-trained models. - **_News (2021-09-08)_**: Add [matlab code](https://github.com/cszn/KAIR/tree/master/matlab) to zoom local part of an image for the purpose of comparison between different results. - **_News (2021-09-07)_**: We upload [the training code](https://github.com/cszn/KAIR/blob/master/docs/README_SwinIR.md) of [SwinIR ![GitHub Stars](https://img.shields.io/github/stars/JingyunLiang/SwinIR?style=social)](https://github.com/JingyunLiang/SwinIR) and provide an [interactive online Colob demo for real-world image SR](https://colab.research.google.com/gist/JingyunLiang/a5e3e54bc9ef8d7bf594f6fee8208533/swinir-demo-on-real-world-image-sr.ipynb). Try to super-resolve your own images on Colab! google colab logo |Real-World Image (x4)|[BSRGAN, ICCV2021](https://github.com/cszn/BSRGAN)|[Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN)|SwinIR (ours)| | :--- | :---: | :-----: | :-----: | |||| ||||| - **_News (2021-08-31)_**: We upload the [training code of BSRGAN](https://github.com/cszn/BSRGAN#training). - **_News (2021-08-24)_**: We upload the BSRGAN degradation model. - **_News (2021-08-22)_**: Support multi-feature-layer VGG perceptual loss and UNet discriminator. - **_News (2021-08-18)_**: We upload the extended BSRGAN degradation model. It is slightly different from our published version. - **_News (2021-06-03)_**: Add testing codes of [GPEN (CVPR21)](https://github.com/yangxy/GPEN) for face image enhancement: [main_test_face_enhancement.py](https://github.com/cszn/KAIR/blob/master/main_test_face_enhancement.py) - **_News (2021-05-13)_**: Add [PatchGAN discriminator](https://github.com/cszn/KAIR/blob/master/models/network_discriminator.py). - **_News (2021-05-12)_**: Support distributed training, see also [https://github.com/xinntao/BasicSR/blob/master/docs/TrainTest.md](https://github.com/xinntao/BasicSR/blob/master/docs/TrainTest.md). - **_News (2021-01)_**: [BSRGAN](https://github.com/cszn/BSRGAN) for blind real image super-resolution will be added. - **_Pull requests are welcome!_** - **Correction (2020-10)**: If you use multiple GPUs for GAN training, remove or comment [Line 105](https://github.com/cszn/KAIR/blob/e52a6944c6a40ba81b88430ffe38fd6517e0449e/models/model_gan.py#L105) to enable `DataParallel` for fast training - **News (2020-10)**: Add [utils_receptivefield.py](https://github.com/cszn/KAIR/blob/master/utils/utils_receptivefield.py) to calculate receptive field. - **News (2020-8)**: A `deep plug-and-play image restoration toolbox` is released at [cszn/DPIR](https://github.com/cszn/DPIR). - **Tips (2020-8)**: Use [this](https://github.com/cszn/KAIR/blob/9fd17abff001ab82a22070f7e442bb5246d2d844/main_challenge_sr.py#L147) to avoid `out of memory` issue. - **News (2020-7)**: Add [main_challenge_sr.py](https://github.com/cszn/KAIR/blob/23b0d0f717980e48fad02513ba14045d57264fe1/main_challenge_sr.py#L90) to get `FLOPs`, `#Params`, `Runtime`, `#Activations`, `#Conv`, and `Max Memory Allocated`. ```python from utils.utils_modelsummary import get_model_activation, get_model_flops input_dim = (3, 256, 256) # set the input dimension activations, num_conv2d = get_model_activation(model, input_dim) logger.info('{:>16s} : {:<.4f} [M]'.format('#Activations', activations/10**6)) logger.info('{:>16s} : {:16s} : {:<.4f} [G]'.format('FLOPs', flops/10**9)) num_parameters = sum(map(lambda x: x.numel(), model.parameters())) logger.info('{:>16s} : {:<.4f} [M]'.format('#Params', num_parameters/10**6)) ``` - **News (2020-6)**: Add [USRNet (CVPR 2020)](https://github.com/cszn/USRNet) for training and testing. - [Network Architecture](https://github.com/cszn/KAIR/blob/3357aa0e54b81b1e26ceb1cee990f39add235e17/models/network_usrnet.py#L309) - [Dataset](https://github.com/cszn/KAIR/blob/6c852636d3715bb281637863822a42c72739122a/data/dataset_usrnet.py#L16) Clone repo ---------- ``` git clone https://github.com/cszn/KAIR.git ``` ``` pip install -r requirement.txt ``` Training ---------- You should modify the json file from [options](https://github.com/cszn/KAIR/tree/master/options) first, for example, setting ["gpu_ids": [0,1,2,3]](https://github.com/cszn/KAIR/blob/ff80d265f64de67dfb3ffa9beff8949773c81a3d/options/train_msrresnet_psnr.json#L4) if 4 GPUs are used, setting ["dataroot_H": "trainsets/trainH"](https://github.com/cszn/KAIR/blob/ff80d265f64de67dfb3ffa9beff8949773c81a3d/options/train_msrresnet_psnr.json#L24) if path of the high quality dataset is `trainsets/trainH`. - Training with `DataParallel` - PSNR ```python python main_train_psnr.py --opt options/train_msrresnet_psnr.json ``` - Training with `DataParallel` - GAN ```python python main_train_gan.py --opt options/train_msrresnet_gan.json ``` - Training with `DistributedDataParallel` - PSNR - 4 GPUs ```python python -m torch.distributed.launch --nproc_per_node=4 --master_port=1234 main_train_psnr.py --opt options/train_msrresnet_psnr.json --dist True ``` - Training with `DistributedDataParallel` - PSNR - 8 GPUs ```python python -m torch.distributed.launch --nproc_per_node=8 --master_port=1234 main_train_psnr.py --opt options/train_msrresnet_psnr.json --dist True ``` - Training with `DistributedDataParallel` - GAN - 4 GPUs ```python python -m torch.distributed.launch --nproc_per_node=4 --master_port=1234 main_train_gan.py --opt options/train_msrresnet_gan.json --dist True ``` - Training with `DistributedDataParallel` - GAN - 8 GPUs ```python python -m torch.distributed.launch --nproc_per_node=8 --master_port=1234 main_train_gan.py --opt options/train_msrresnet_gan.json --dist True ``` - Kill distributed training processes of `main_train_gan.py` ```python kill $(ps aux | grep main_train_gan.py | grep -v grep | awk '{print $2}') ``` ---------- | Method | Original Link | |---|---| | DnCNN |[https://github.com/cszn/DnCNN](https://github.com/cszn/DnCNN)| | FDnCNN |[https://github.com/cszn/DnCNN](https://github.com/cszn/DnCNN)| | FFDNet | [https://github.com/cszn/FFDNet](https://github.com/cszn/FFDNet)| | SRMD | [https://github.com/cszn/SRMD](https://github.com/cszn/SRMD)| | DPSR-SRResNet | [https://github.com/cszn/DPSR](https://github.com/cszn/DPSR)| | SRResNet | [https://github.com/xinntao/BasicSR](https://github.com/xinntao/BasicSR)| | ESRGAN | [https://github.com/xinntao/ESRGAN](https://github.com/xinntao/ESRGAN)| | RRDB | [https://github.com/xinntao/ESRGAN](https://github.com/xinntao/ESRGAN)| | IMDB | [https://github.com/Zheng222/IMDN](https://github.com/Zheng222/IMDN)| | USRNet | [https://github.com/cszn/USRNet](https://github.com/cszn/USRNet)| | DRUNet | [https://github.com/cszn/DPIR](https://github.com/cszn/DPIR)| | DPIR | [https://github.com/cszn/DPIR](https://github.com/cszn/DPIR)| | BSRGAN | [https://github.com/cszn/BSRGAN](https://github.com/cszn/BSRGAN)| | SwinIR | [https://github.com/JingyunLiang/SwinIR](https://github.com/JingyunLiang/SwinIR)| | VRT | [https://github.com/JingyunLiang/VRT](https://github.com/JingyunLiang/VRT) | Network architectures ---------- * [USRNet](https://github.com/cszn/USRNet) * DnCNN * IRCNN denoiser * FFDNet * SRMD * SRResNet, SRGAN, RRDB, ESRGAN * IMDN ----- Testing ---------- |Method | [model_zoo](model_zoo)| |---|---| | [main_test_dncnn.py](main_test_dncnn.py) |```dncnn_15.pth, dncnn_25.pth, dncnn_50.pth, dncnn_gray_blind.pth, dncnn_color_blind.pth, dncnn3.pth```| | [main_test_ircnn_denoiser.py](main_test_ircnn_denoiser.py) | ```ircnn_gray.pth, ircnn_color.pth```| | [main_test_fdncnn.py](main_test_fdncnn.py) | ```fdncnn_gray.pth, fdncnn_color.pth, fdncnn_gray_clip.pth, fdncnn_color_clip.pth```| | [main_test_ffdnet.py](main_test_ffdnet.py) | ```ffdnet_gray.pth, ffdnet_color.pth, ffdnet_gray_clip.pth, ffdnet_color_clip.pth```| | [main_test_srmd.py](main_test_srmd.py) | ```srmdnf_x2.pth, srmdnf_x3.pth, srmdnf_x4.pth, srmd_x2.pth, srmd_x3.pth, srmd_x4.pth```| | | **The above models are converted from MatConvNet.** | | [main_test_dpsr.py](main_test_dpsr.py) | ```dpsr_x2.pth, dpsr_x3.pth, dpsr_x4.pth, dpsr_x4_gan.pth```| | [main_test_msrresnet.py](main_test_msrresnet.py) | ```msrresnet_x4_psnr.pth, msrresnet_x4_gan.pth```| | [main_test_rrdb.py](main_test_rrdb.py) | ```rrdb_x4_psnr.pth, rrdb_x4_esrgan.pth```| | [main_test_imdn.py](main_test_imdn.py) | ```imdn_x4.pth```| [model_zoo](model_zoo) -------- - download link [https://drive.google.com/drive/folders/13kfr3qny7S2xwG9h7v95F5mkWs0OmU0D](https://drive.google.com/drive/folders/13kfr3qny7S2xwG9h7v95F5mkWs0OmU0D) [trainsets](trainsets) ---------- - [https://github.com/xinntao/BasicSR/blob/master/docs/DatasetPreparation.md](https://github.com/xinntao/BasicSR/blob/master/docs/DatasetPreparation.md) - [train400](https://github.com/cszn/DnCNN/tree/master/TrainingCodes/DnCNN_TrainingCodes_v1.0/data) - [DIV2K](https://data.vision.ee.ethz.ch/cvl/DIV2K/) - [Flickr2K](https://cv.snu.ac.kr/research/EDSR/Flickr2K.tar) - optional: use [split_imageset(original_dataroot, taget_dataroot, n_channels=3, p_size=512, p_overlap=96, p_max=800)](https://github.com/cszn/KAIR/blob/3ee0bf3e07b90ec0b7302d97ee2adb780617e637/utils/utils_image.py#L123) to get ```trainsets/trainH``` with small images for fast data loading [testsets](testsets) ----------- - [https://github.com/xinntao/BasicSR/blob/master/docs/DatasetPreparation.md](https://github.com/xinntao/BasicSR/blob/master/docs/DatasetPreparation.md) - [set12](https://github.com/cszn/FFDNet/tree/master/testsets) - [bsd68](https://github.com/cszn/FFDNet/tree/master/testsets) - [cbsd68](https://github.com/cszn/FFDNet/tree/master/testsets) - [kodak24](https://github.com/cszn/FFDNet/tree/master/testsets) - [srbsd68](https://github.com/cszn/DPSR/tree/master/testsets/BSD68/GT) - set5 - set14 - cbsd100 - urban100 - manga109 References ---------- ```BibTex @article{liang2022vrt, title={VRT: A Video Restoration Transformer}, author={Liang, Jingyun and Cao, Jiezhang and Fan, Yuchen and Zhang, Kai and Ranjan, Rakesh and Li, Yawei and Timofte, Radu and Van Gool, Luc}, journal={arXiv preprint arXiv:2022.00000}, year={2022} } @inproceedings{liang2021swinir, title={SwinIR: Image Restoration Using Swin Transformer}, author={Liang, Jingyun and Cao, Jiezhang and Sun, Guolei and Zhang, Kai and Van Gool, Luc and Timofte, Radu}, booktitle={IEEE International Conference on Computer Vision Workshops}, pages={1833--1844}, year={2021} } @inproceedings{zhang2021designing, title={Designing a Practical Degradation Model for Deep Blind Image Super-Resolution}, author={Zhang, Kai and Liang, Jingyun and Van Gool, Luc and Timofte, Radu}, booktitle={IEEE International Conference on Computer Vision}, pages={4791--4800}, year={2021} } @article{zhang2021plug, % DPIR & DRUNet & IRCNN title={Plug-and-Play Image Restoration with Deep Denoiser Prior}, author={Zhang, Kai and Li, Yawei and Zuo, Wangmeng and Zhang, Lei and Van Gool, Luc and Timofte, Radu}, journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, year={2021} } @inproceedings{zhang2020aim, % efficientSR_challenge title={AIM 2020 Challenge on Efficient Super-Resolution: Methods and Results}, author={Kai Zhang and Martin Danelljan and Yawei Li and Radu Timofte and others}, booktitle={European Conference on Computer Vision Workshops}, year={2020} } @inproceedings{zhang2020deep, % USRNet title={Deep unfolding network for image super-resolution}, author={Zhang, Kai and Van Gool, Luc and Timofte, Radu}, booktitle={IEEE Conference on Computer Vision and Pattern Recognition}, pages={3217--3226}, year={2020} } @article{zhang2017beyond, % DnCNN title={Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising}, author={Zhang, Kai and Zuo, Wangmeng and Chen, Yunjin and Meng, Deyu and Zhang, Lei}, journal={IEEE Transactions on Image Processing}, volume={26}, number={7}, pages={3142--3155}, year={2017} } @inproceedings{zhang2017learning, % IRCNN title={Learning deep CNN denoiser prior for image restoration}, author={Zhang, Kai and Zuo, Wangmeng and Gu, Shuhang and Zhang, Lei}, booktitle={IEEE conference on computer vision and pattern recognition}, pages={3929--3938}, year={2017} } @article{zhang2018ffdnet, % FFDNet, FDnCNN title={FFDNet: Toward a fast and flexible solution for CNN-based image denoising}, author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei}, journal={IEEE Transactions on Image Processing}, volume={27}, number={9}, pages={4608--4622}, year={2018} } @inproceedings{zhang2018learning, % SRMD title={Learning a single convolutional super-resolution network for multiple degradations}, author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei}, booktitle={IEEE Conference on Computer Vision and Pattern Recognition}, pages={3262--3271}, year={2018} } @inproceedings{zhang2019deep, % DPSR title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels}, author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei}, booktitle={IEEE Conference on Computer Vision and Pattern Recognition}, pages={1671--1681}, year={2019} } @InProceedings{wang2018esrgan, % ESRGAN, MSRResNet author = {Wang, Xintao and Yu, Ke and Wu, Shixiang and Gu, Jinjin and Liu, Yihao and Dong, Chao and Qiao, Yu and Loy, Chen Change}, title = {ESRGAN: Enhanced super-resolution generative adversarial networks}, booktitle = {The European Conference on Computer Vision Workshops (ECCVW)}, month = {September}, year = {2018} } @inproceedings{hui2019lightweight, % IMDN title={Lightweight Image Super-Resolution with Information Multi-distillation Network}, author={Hui, Zheng and Gao, Xinbo and Yang, Yunchu and Wang, Xiumei}, booktitle={Proceedings of the 27th ACM International Conference on Multimedia (ACM MM)}, pages={2024--2032}, year={2019} } @inproceedings{zhang2019aim, % IMDN title={AIM 2019 Challenge on Constrained Super-Resolution: Methods and Results}, author={Kai Zhang and Shuhang Gu and Radu Timofte and others}, booktitle={IEEE International Conference on Computer Vision Workshops}, year={2019} } @inproceedings{yang2021gan, title={GAN Prior Embedded Network for Blind Face Restoration in the Wild}, author={Tao Yang, Peiran Ren, Xuansong Xie, and Lei Zhang}, booktitle={IEEE Conference on Computer Vision and Pattern Recognition}, year={2021} } ```