{ "task": "swinir_car_jpeg_40" // JPEG compression artifact reduction for quality factor 10/20/30/40. root/task/images-models-options , "model": "plain" // "plain" | "plain2" if two inputs , "gpu_ids": [0,1,2,3,4,5,6,7] , "dist": true , "is_color": false // color or grayscale , "path": { "root": "dejpeg" // "denoising" | "superresolution" | "dejpeg" , "pretrained_netG": null // path of pretrained model. We fine-tune quality=10/20/30 models from quality=40 model, so that `G_optimizer_lr` and `G_scheduler_milestones` can be halved to save time. , "pretrained_netE": null // path of pretrained model } , "datasets": { "train": { "name": "train_dataset" // just name , "dataset_type": "jpeg" // "dncnn" | "dnpatch" | "fdncnn" | "ffdnet" | "sr" | "srmd" | "dpsr" | "plain" | "plainpatch" | "jpeg" , "dataroot_H": "trainsets/trainH"// path of H training dataset. DIV2K (800 training images) + Flickr2K (2650 images) + BSD500 (400 training&testing images) + WED(4744 images) in SwinIR , "dataroot_L": null // path of L training dataset , "H_size": 126 // patch_size , "quality_factor": 40 // 10 | 20 | 30 | 40. , "quality_factor_test": 40 // , "is_color": false // , "dataloader_shuffle": true , "dataloader_num_workers": 16 , "dataloader_batch_size": 8 // batch size 1 | 16 | 32 | 48 | 64 | 128. Total batch size =1x8=8 in SwinIR } , "test": { "name": "test_dataset" // just name , "dataset_type": "jpeg" // "dncnn" | "dnpatch" | "fdncnn" | "ffdnet" | "sr" | "srmd" | "dpsr" | "plain" | "plainpatch" | "jpeg" , "dataroot_H": "testsets/LIVE1" // path of H testing dataset , "dataroot_L": null // path of L testing dataset , "quality_factor": 40 // 10 | 20 | 30 | 40. , "quality_factor_test": 40 // , "is_color": false // } } , "netG": { "net_type": "swinir" , "upscale": 1 , "in_chans": 1 , "img_size": 126 , "window_size": 7 // 7 works better than 8, maybe because jpeg encoding uses 8x8 patches , "img_range": 255.0 // image_range=255.0 is slightly better , "depths": [6, 6, 6, 6, 6, 6] , "embed_dim": 180 , "num_heads": [6, 6, 6, 6, 6, 6] , "mlp_ratio": 2 , "upsampler": null // "pixelshuffle" | "pixelshuffledirect" | "nearest+conv" | null , "resi_connection": "1conv" // "1conv" | "3conv" , "init_type": "default" } , "train": { "G_lossfn_type": "charbonnier" // "l1" | "l2sum" | "l2" | "ssim" | "charbonnier" preferred , "G_lossfn_weight": 1.0 // default , "G_charbonnier_eps": 1e-9 , "E_decay": 0.999 // Exponential Moving Average for netG: set 0 to disable; default setting 0.999 , "G_optimizer_type": "adam" // fixed, adam is enough , "G_optimizer_lr": 2e-4 // learning rate , "G_optimizer_wd": 0 // weight decay, default 0 , "G_optimizer_clipgrad": null // unused , "G_optimizer_reuse": true // , "G_scheduler_type": "MultiStepLR" // "MultiStepLR" is enough , "G_scheduler_milestones": [800000, 1200000, 1400000, 1500000, 1600000] , "G_scheduler_gamma": 0.5 , "G_regularizer_orthstep": null // unused , "G_regularizer_clipstep": null // unused , "G_param_strict": true , "E_param_strict": true , "checkpoint_test": 5000 // for testing , "checkpoint_save": 5000 // for saving model , "checkpoint_print": 200 // for print } }