{ "task": "msrresnet_psnr" // root/task/images-models-options, pay attention to the difference between "msrresnet0" and "msrresnet1" , "model": "plain" // "plain" | "plain2" if two inputs , "gpu_ids": [0] , "dist": true , "scale": 4 // broadcast to "netG" if SISR , "n_channels": 3 // broadcast to "datasets", 1 for grayscale, 3 for color , "sigma": 0 // 15, 25, 50 for DnCNN | [0, 75] for FDnCNN and FFDNet , "sigma_test": 0 // 15, 25, 50 for DnCNN, FDnCNN and FFDNet, 0 for SR , "merge_bn": false // if no BN exists, set false , "merge_bn_startpoint": 400000 // merge BN after N iterations , "path": { "root": "superresolution" // "denoising" | "superresolution" , "pretrained_netG": null // path of pretrained model , "pretrained_netE": null // path of pretrained model } , "datasets": { "train": { "name": "train_dataset" // just name , "dataset_type": "sr" // "dncnn" | "dnpatch" | "fdncnn" | "ffdnet" | "sr" | "srmd" | "dpsr" | "plain" | "plainpatch" , "dataroot_H": "trainsets/trainH"// path of H training dataset , "dataroot_L": null // path of L training dataset , "H_size": 96 // patch size 40 | 64 | 96 | 128 | 192 , "dataloader_shuffle": true , "dataloader_num_workers": 8 , "dataloader_batch_size": 32 // batch size 1 | 16 | 32 | 48 | 64 | 128 } , "test": { "name": "test_dataset" // just name , "dataset_type": "sr" // "dncnn" | "dnpatch" | "fdncnn" | "ffdnet" | "sr" | "srmd" | "dpsr" | "plain" | "plainpatch" , "dataroot_H": "testsets/set5" // path of H testing dataset , "dataroot_L": null // path of L testing dataset } } , "netG": { "net_type": "msrresnet0" // "dncnn" | "fdncnn" | "ffdnet" | "srmd" | "dpsr" | "msrresnet0" | "msrresnet1" | "rrdb" , "in_nc": 3 // input channel number , "out_nc": 3 // ouput channel number , "nc": 64 // 96 for DPSR, 128 for SRMD, 64 for "dncnn" , "nb": 16 // 12 for "srmd", 15 for "ffdnet", 20 for "dncnn", 16 for "srresnet" and "dpsr" , "gc": 32 // unused , "ng": 2 // unused , "reduction" : 16 // unused , "act_mode": "R" // "BR" for BN+ReLU | "R" for ReLU , "upsample_mode": "upconv" // "pixelshuffle" | "convtranspose" | "upconv" , "downsample_mode": "strideconv" // "strideconv" | "avgpool" | "maxpool" , "init_type": "orthogonal" // "orthogonal" | "normal" | "uniform" | "xavier_normal" | "xavier_uniform" | "kaiming_normal" | "kaiming_uniform" , "init_bn_type": "uniform" // "uniform" | "constant" , "init_gain": 0.2 } , "train": { "G_lossfn_type": "l1" // "l1" preferred | "l2sum" | "l2" | "ssim" , "G_lossfn_weight": 1.0 // default , "E_decay": 0.999 // Exponential Moving Average for netG: set 0 to disable; default setting 0.999 , "G_optimizer_type": "adam" // fixed, adam is enough , "G_optimizer_lr": 1e-4 // learning rate , "G_optimizer_wd": 0 // weight decay, default 0 , "G_optimizer_clipgrad": null // unused , "G_optimizer_reuse": false , "G_scheduler_type": "MultiStepLR" // "MultiStepLR" is enough , "G_scheduler_milestones": [200000, 400000, 600000, 800000, 1000000, 2000000] , "G_scheduler_gamma": 0.5 , "G_regularizer_orthstep": null // unused , "G_regularizer_clipstep": null // unused , "G_param_strict": true , "E_param_strict": true , "checkpoint_test": 5000 // for testing , "checkpoint_save": 5000 // for saving model , "checkpoint_print": 200 // for print } }