Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import LayoutLMv3ForTokenClassification, LayoutLMv3Processor | |
from PIL import Image | |
import torch | |
import easyocr | |
from PIL import Image | |
import re | |
# Load the model and processor from Hugging Face | |
model_name = "capitaletech/LayoutLMv3-v1" # Replace with your model repository name | |
model = LayoutLMv3ForTokenClassification.from_pretrained(model_name) | |
processor = LayoutLMv3Processor.from_pretrained(model_name) | |
st.title("LayoutLMv3 Text Extraction") | |
st.write("Upload an image to get text predictions using the fine-tuned LayoutLMv3 model.") | |
uploaded_file = st.file_uploader("Choose an image...", type="png") | |
if uploaded_file is not None: | |
image = Image.open(uploaded_file) | |
st.image(image, caption='Uploaded Image.', use_column_width=True) | |
st.write("") | |
st.write("Classifying...") | |
# Process the image | |
words = uploaded_file["tokens"] | |
boxes = uploaded_file["bboxes"] | |
word_labels = uploaded_file["ner_tags"] | |
encoding = processor(image, words, boxes=boxes, word_labels=word_labels, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = model(**encoding) | |
logits = outputs.logits | |
predictions = logits.argmax(-1).squeeze().cpu.tolist() | |
labels = encoding['labels'].squeeze().tolist() | |
# Set up the EasyOCR reader for multiple languages | |
languages = ["ru", "rs_cyrillic", "be", "bg", "uk", "mn", "en"] | |
reader = easyocr.Reader(languages) | |
# Load the image | |
image_path = example["img_path"] | |
image = Image.open(image_path) | |
# Perform text detection | |
ocr_results = reader.readtext(image_path, detail=1) | |
# Extract text and bounding boxes, filtering non-alphabetic characters from text | |
words = [] | |
boxes = [] | |
# Define a regular expression pattern for non-alphabetic characters | |
non_alphabet_pattern = re.compile(r'[^a-zA-Z]+') | |
for result in ocr_results: | |
bbox, text, _ = result | |
filtered_text = re.sub(non_alphabet_pattern, '', text) | |
if filtered_text: # Only append if there are alphabetic characters left | |
words.append(filtered_text) | |
boxes.append([ | |
bbox[0][0], bbox[0][1], | |
bbox[2][0], bbox[2][1] | |
]) | |
words = words[1:] | |
def unnormalize_box(bbox, width, height): | |
return [ | |
width * (bbox[0] / 1000), | |
height * (bbox[1] / 1000), | |
width * (bbox[2] / 1000), | |
height * (bbox[3] / 1000), | |
] | |
token_boxes = encoding["bbox"].squeeze().tolist() | |
width, height = image.size | |
true_predictions = [model.config.id2label[pred] for pred, label in zip(predictions, labels) if label != - 100] | |
true_labels = [model.config.id2label[label] for prediction, label in zip(predictions, labels) if label != -100] | |
true_boxes = [unnormalize_box(box, width, height) for box, label in zip(token_boxes, labels) if label != -100] | |
true_tokens = words | |
# Associate languages with their levels | |
languages_with_levels = {} | |
current_language = None | |
j=0 | |
for i in range(0, len(true_labels)): | |
if true_labels[i] == 'language': | |
current_language = words[j] | |
j= j+1 | |
languages_with_levels[current_language] = true_labels[i+1] | |
print(languages_with_levels) | |
input_ids = encoding["input_ids"] | |
bbox = encoding["bbox"] | |
attention_mask = encoding["attention_mask"] | |
st.write("Predicted labels:") | |
# Print languages with their levels | |
for language, level in languages_with_levels.items(): | |
st.write(f"{language}: {level}") | |