Spaces:
Sleeping
Sleeping
import fastapi | |
import json | |
import uvicorn | |
from fastapi import HTTPException | |
from fastapi.responses import HTMLResponse | |
from fastapi.middleware.cors import CORSMiddleware | |
from sse_starlette.sse import EventSourceResponse | |
from starlette.responses import StreamingResponse | |
from ctransformers import AutoModelForCausalLM | |
from pydantic import BaseModel | |
from typing import List, Dict, Any, Generator | |
llm = AutoModelForCausalLM.from_pretrained("TheBloke/falcon-40b-instruct-GGML", model_file="falcon40b-instruct.ggmlv3.q2_K.bin", | |
model_type="falcon", threads=8) | |
app = fastapi.FastAPI(title="🦅Falcon 40B GGML (ggmlv3.q2_K)🦅") | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=["*"], | |
allow_credentials=True, | |
allow_methods=["*"], | |
allow_headers=["*"], | |
) | |
class ChatCompletionRequestV0(BaseModel): | |
prompt: str | |
class Message(BaseModel): | |
role: str | |
content: str | |
class ChatCompletionRequest(BaseModel): | |
messages: List[Message] | |
max_tokens: int = 250 | |
async def completion(request: ChatCompletionRequestV0, response_mode=None): | |
response = llm(request.prompt) | |
return response | |
async def chat(request: ChatCompletionRequest): | |
combined_messages = ' '.join([message.content for message in request.messages]) | |
tokens = llm.tokenize(combined_messages) | |
try: | |
chat_chunks = llm.generate(tokens) | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=str(e)) | |
async def format_response(chat_chunks: Generator) -> Any: | |
for chat_chunk in chat_chunks: | |
response = { | |
'choices': [ | |
{ | |
'message': { | |
'role': 'system', | |
'content': llm.detokenize(chat_chunk) | |
}, | |
'finish_reason': 'stop' if llm.detokenize(chat_chunk) == "[DONE]" else 'unknown' | |
} | |
] | |
} | |
yield f"data: {json.dumps(response)}\n\n" | |
yield "event: done\ndata: {}\n\n" | |
return StreamingResponse(format_response(chat_chunks), media_type="text/event-stream") | |
async def chat(request: ChatCompletionRequestV0, response_mode=None): | |
tokens = llm.tokenize(request.prompt) | |
async def server_sent_events(chat_chunks, llm): | |
for chat_chunk in llm.generate(chat_chunks): | |
yield dict(data=json.dumps(llm.detokenize(chat_chunk))) | |
yield dict(data="[DONE]") | |
return EventSourceResponse(server_sent_events(tokens, llm)) | |
if __name__ == "__main__": | |
uvicorn.run(app, host="0.0.0.0", port=8000) |