Spaces:
Runtime error
Runtime error
File size: 5,984 Bytes
c275b63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
import functools
import torch
import torch.nn as nn
from .base_function import LayerNorm2d, ADAINHourglass, FineEncoder, FineDecoder
def convert_flow_to_deformation(flow):
r"""convert flow fields to deformations.
Args:
flow (tensor): Flow field obtained by the model
Returns:
deformation (tensor): The deformation used for warpping
"""
b,c,h,w = flow.shape
flow_norm = 2 * torch.cat([flow[:,:1,...]/(w-1),flow[:,1:,...]/(h-1)], 1)
grid = make_coordinate_grid(flow)
deformation = grid + flow_norm.permute(0,2,3,1)
return deformation
def make_coordinate_grid(flow):
r"""obtain coordinate grid with the same size as the flow filed.
Args:
flow (tensor): Flow field obtained by the model
Returns:
grid (tensor): The grid with the same size as the input flow
"""
b,c,h,w = flow.shape
x = torch.arange(w).to(flow)
y = torch.arange(h).to(flow)
x = (2 * (x / (w - 1)) - 1)
y = (2 * (y / (h - 1)) - 1)
yy = y.view(-1, 1).repeat(1, w)
xx = x.view(1, -1).repeat(h, 1)
meshed = torch.cat([xx.unsqueeze_(2), yy.unsqueeze_(2)], 2)
meshed = meshed.expand(b, -1, -1, -1)
return meshed
def warp_image(source_image, deformation):
r"""warp the input image according to the deformation
Args:
source_image (tensor): source images to be warpped
deformation (tensor): deformations used to warp the images; value in range (-1, 1)
Returns:
output (tensor): the warpped images
"""
_, h_old, w_old, _ = deformation.shape
_, _, h, w = source_image.shape
if h_old != h or w_old != w:
deformation = deformation.permute(0, 3, 1, 2)
deformation = torch.nn.functional.interpolate(deformation, size=(h, w), mode='bilinear')
deformation = deformation.permute(0, 2, 3, 1)
return torch.nn.functional.grid_sample(source_image, deformation)
class FaceGenerator(nn.Module):
def __init__(
self,
mapping_net,
warpping_net,
editing_net,
common
):
super(FaceGenerator, self).__init__()
self.mapping_net = MappingNet(**mapping_net)
self.warpping_net = WarpingNet(**warpping_net, **common)
self.editing_net = EditingNet(**editing_net, **common)
def forward(
self,
input_image,
driving_source,
stage=None
):
if stage == 'warp':
descriptor = self.mapping_net(driving_source)
output = self.warpping_net(input_image, descriptor)
else:
descriptor = self.mapping_net(driving_source)
output = self.warpping_net(input_image, descriptor)
output['fake_image'] = self.editing_net(input_image, output['warp_image'], descriptor)
return output
class MappingNet(nn.Module):
def __init__(self, coeff_nc, descriptor_nc, layer):
super( MappingNet, self).__init__()
self.layer = layer
nonlinearity = nn.LeakyReLU(0.1)
self.first = nn.Sequential(
torch.nn.Conv1d(coeff_nc, descriptor_nc, kernel_size=7, padding=0, bias=True))
for i in range(layer):
net = nn.Sequential(nonlinearity,
torch.nn.Conv1d(descriptor_nc, descriptor_nc, kernel_size=3, padding=0, dilation=3))
setattr(self, 'encoder' + str(i), net)
self.pooling = nn.AdaptiveAvgPool1d(1)
self.output_nc = descriptor_nc
def forward(self, input_3dmm):
out = self.first(input_3dmm)
for i in range(self.layer):
model = getattr(self, 'encoder' + str(i))
out = model(out) + out[:,:,3:-3]
out = self.pooling(out)
return out
class WarpingNet(nn.Module):
def __init__(
self,
image_nc,
descriptor_nc,
base_nc,
max_nc,
encoder_layer,
decoder_layer,
use_spect
):
super( WarpingNet, self).__init__()
nonlinearity = nn.LeakyReLU(0.1)
norm_layer = functools.partial(LayerNorm2d, affine=True)
kwargs = {'nonlinearity':nonlinearity, 'use_spect':use_spect}
self.descriptor_nc = descriptor_nc
self.hourglass = ADAINHourglass(image_nc, self.descriptor_nc, base_nc,
max_nc, encoder_layer, decoder_layer, **kwargs)
self.flow_out = nn.Sequential(norm_layer(self.hourglass.output_nc),
nonlinearity,
nn.Conv2d(self.hourglass.output_nc, 2, kernel_size=7, stride=1, padding=3))
self.pool = nn.AdaptiveAvgPool2d(1)
def forward(self, input_image, descriptor):
final_output={}
output = self.hourglass(input_image, descriptor)
final_output['flow_field'] = self.flow_out(output)
deformation = convert_flow_to_deformation(final_output['flow_field'])
final_output['warp_image'] = warp_image(input_image, deformation)
return final_output
class EditingNet(nn.Module):
def __init__(
self,
image_nc,
descriptor_nc,
layer,
base_nc,
max_nc,
num_res_blocks,
use_spect):
super(EditingNet, self).__init__()
nonlinearity = nn.LeakyReLU(0.1)
norm_layer = functools.partial(LayerNorm2d, affine=True)
kwargs = {'norm_layer':norm_layer, 'nonlinearity':nonlinearity, 'use_spect':use_spect}
self.descriptor_nc = descriptor_nc
# encoder part
self.encoder = FineEncoder(image_nc*2, base_nc, max_nc, layer, **kwargs)
self.decoder = FineDecoder(image_nc, self.descriptor_nc, base_nc, max_nc, layer, num_res_blocks, **kwargs)
def forward(self, input_image, warp_image, descriptor):
x = torch.cat([input_image, warp_image], 1)
x = self.encoder(x)
gen_image = self.decoder(x, descriptor)
return gen_image
|