File size: 5,492 Bytes
c275b63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import os
import cv2
from tqdm import tqdm
import yaml
import numpy as np
import warnings
from skimage import img_as_ubyte
import safetensors
import safetensors.torch 
warnings.filterwarnings('ignore')


import imageio
import torch

from src.facerender.pirender.config import Config
from src.facerender.pirender.face_model import FaceGenerator

from pydub import AudioSegment 
from src.utils.face_enhancer import enhancer_generator_with_len, enhancer_list
from src.utils.paste_pic import paste_pic
from src.utils.videoio import save_video_with_watermark

try:
    import webui  # in webui
    in_webui = True
except:
    in_webui = False

class AnimateFromCoeff_PIRender():

    def __init__(self, sadtalker_path, device):

        opt = Config(sadtalker_path['pirender_yaml_path'], None, is_train=False)
        opt.device = device
        self.net_G_ema = FaceGenerator(**opt.gen.param).to(opt.device)
        checkpoint_path = sadtalker_path['pirender_checkpoint']
        checkpoint = torch.load(checkpoint_path, map_location=lambda storage, loc: storage)
        self.net_G_ema.load_state_dict(checkpoint['net_G_ema'], strict=False)
        print('load [net_G] and [net_G_ema] from {}'.format(checkpoint_path))
        self.net_G = self.net_G_ema.eval()
        self.device = device
    

    def generate(self, x, video_save_dir, pic_path, crop_info, enhancer=None, background_enhancer=None, preprocess='crop', img_size=256):

        source_image=x['source_image'].type(torch.FloatTensor)
        source_semantics=x['source_semantics'].type(torch.FloatTensor)
        target_semantics=x['target_semantics_list'].type(torch.FloatTensor) 
        source_image=source_image.to(self.device)
        source_semantics=source_semantics.to(self.device)
        target_semantics=target_semantics.to(self.device)
        frame_num = x['frame_num']
        
        with torch.no_grad():
            predictions_video = []
            for i in tqdm(range(target_semantics.shape[1]), 'FaceRender:'):
                 predictions_video.append(self.net_G(source_image, target_semantics[:, i])['fake_image'])
        
        predictions_video = torch.stack(predictions_video, dim=1)
        predictions_video = predictions_video.reshape((-1,)+predictions_video.shape[2:])

        video = []
        for idx in range(len(predictions_video)):
            image = predictions_video[idx]
            image = np.transpose(image.data.cpu().numpy(), [1, 2, 0]).astype(np.float32)
            video.append(image)
        result = img_as_ubyte(video)

        ### the generated video is 256x256, so we keep the aspect ratio, 
        original_size = crop_info[0]
        if original_size:
            result = [ cv2.resize(result_i,(img_size, int(img_size * original_size[1]/original_size[0]) )) for result_i in result ]
        
        video_name = x['video_name']  + '.mp4'
        path = os.path.join(video_save_dir, 'temp_'+video_name)
        
        imageio.mimsave(path, result,  fps=float(25))

        av_path = os.path.join(video_save_dir, video_name)
        return_path = av_path 
        
        audio_path =  x['audio_path'] 
        audio_name = os.path.splitext(os.path.split(audio_path)[-1])[0]
        new_audio_path = os.path.join(video_save_dir, audio_name+'.wav')
        start_time = 0
        # cog will not keep the .mp3 filename
        sound = AudioSegment.from_file(audio_path)
        frames = frame_num 
        end_time = start_time + frames*1/25*1000
        word1=sound.set_frame_rate(16000)
        word = word1[start_time:end_time]
        word.export(new_audio_path, format="wav")

        save_video_with_watermark(path, new_audio_path, av_path, watermark= False)
        print(f'The generated video is named {video_save_dir}/{video_name}') 

        if 'full' in preprocess.lower():
            # only add watermark to the full image.
            video_name_full = x['video_name']  + '_full.mp4'
            full_video_path = os.path.join(video_save_dir, video_name_full)
            return_path = full_video_path
            paste_pic(path, pic_path, crop_info, new_audio_path, full_video_path, extended_crop= True if 'ext' in preprocess.lower() else False)
            print(f'The generated video is named {video_save_dir}/{video_name_full}') 
        else:
            full_video_path = av_path 

        #### paste back then enhancers
        if enhancer:
            video_name_enhancer = x['video_name']  + '_enhanced.mp4'
            enhanced_path = os.path.join(video_save_dir, 'temp_'+video_name_enhancer)
            av_path_enhancer = os.path.join(video_save_dir, video_name_enhancer) 
            return_path = av_path_enhancer

            try:
                enhanced_images_gen_with_len = enhancer_generator_with_len(full_video_path, method=enhancer, bg_upsampler=background_enhancer)
                imageio.mimsave(enhanced_path, enhanced_images_gen_with_len, fps=float(25))
            except:
                enhanced_images_gen_with_len = enhancer_list(full_video_path, method=enhancer, bg_upsampler=background_enhancer)
                imageio.mimsave(enhanced_path, enhanced_images_gen_with_len, fps=float(25))
            
            save_video_with_watermark(enhanced_path, new_audio_path, av_path_enhancer, watermark= False)
            print(f'The generated video is named {video_save_dir}/{video_name_enhancer}')
            os.remove(enhanced_path)

        os.remove(path)
        os.remove(new_audio_path)

        return return_path