Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Merge branch 'main' of https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
Browse files
app.py
CHANGED
@@ -216,22 +216,14 @@ def change_tab(query_param: str):
|
|
216 |
# Searching and filtering
|
217 |
def update_table(hidden_df: pd.DataFrame, current_columns_df: pd.DataFrame, columns: list, type_query: list, size_query: list, show_deleted: bool, query: str):
|
218 |
filtered_df = filter_models(hidden_df, type_query, size_query, show_deleted)
|
219 |
-
|
220 |
-
|
|
|
221 |
|
222 |
return df
|
223 |
|
224 |
-
def search_table(df: pd.DataFrame,
|
225 |
-
|
226 |
-
if AutoEvalColumn.model_type.name in current_columns:
|
227 |
-
filtered_df = df[
|
228 |
-
(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))
|
229 |
-
| (df[AutoEvalColumn.model_type.name].str.contains(query, case=False))
|
230 |
-
]
|
231 |
-
else:
|
232 |
-
filtered_df = df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
|
233 |
-
|
234 |
-
return filtered_df
|
235 |
|
236 |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
237 |
always_here_cols = [
|
|
|
216 |
# Searching and filtering
|
217 |
def update_table(hidden_df: pd.DataFrame, current_columns_df: pd.DataFrame, columns: list, type_query: list, size_query: list, show_deleted: bool, query: str):
|
218 |
filtered_df = filter_models(hidden_df, type_query, size_query, show_deleted)
|
219 |
+
if query != "":
|
220 |
+
filtered_df = search_table(filtered_df, query)
|
221 |
+
df = select_columns(filtered_df, columns)
|
222 |
|
223 |
return df
|
224 |
|
225 |
+
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
226 |
+
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
|
228 |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
229 |
always_here_cols = [
|
src/display_models/get_model_metadata.py
CHANGED
@@ -26,6 +26,7 @@ def get_model_infos_from_hub(leaderboard_data: List[dict]):
|
|
26 |
|
27 |
for model_data in tqdm(leaderboard_data):
|
28 |
model_name = model_data["model_name_for_query"]
|
|
|
29 |
|
30 |
if model_name in model_info_cache:
|
31 |
model_info = model_info_cache[model_name]
|
@@ -39,6 +40,16 @@ def get_model_infos_from_hub(leaderboard_data: List[dict]):
|
|
39 |
model_data[AutoEvalColumn.likes.name] = None
|
40 |
model_data[AutoEvalColumn.params.name] = get_model_size(model_name, None)
|
41 |
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
model_data[AutoEvalColumn.license.name] = get_model_license(model_info)
|
44 |
model_data[AutoEvalColumn.likes.name] = get_model_likes(model_info)
|
@@ -53,7 +64,7 @@ def get_model_license(model_info):
|
|
53 |
try:
|
54 |
return model_info.cardData["license"]
|
55 |
except Exception:
|
56 |
-
return
|
57 |
|
58 |
|
59 |
def get_model_likes(model_info):
|
@@ -73,7 +84,7 @@ def get_model_size(model_name, model_info):
|
|
73 |
size = size_match.group(0)
|
74 |
return round(float(size[:-1]) if size[-1] == "b" else float(size[:-1]) / 1e3, 3)
|
75 |
except AttributeError:
|
76 |
-
return
|
77 |
|
78 |
|
79 |
def get_model_type(leaderboard_data: List[dict]):
|
|
|
26 |
|
27 |
for model_data in tqdm(leaderboard_data):
|
28 |
model_name = model_data["model_name_for_query"]
|
29 |
+
<<<<<<< HEAD
|
30 |
|
31 |
if model_name in model_info_cache:
|
32 |
model_info = model_info_cache[model_name]
|
|
|
40 |
model_data[AutoEvalColumn.likes.name] = None
|
41 |
model_data[AutoEvalColumn.params.name] = get_model_size(model_name, None)
|
42 |
continue
|
43 |
+
=======
|
44 |
+
try:
|
45 |
+
model_info = api.model_info(model_name)
|
46 |
+
except huggingface_hub.utils._errors.RepositoryNotFoundError:
|
47 |
+
print("Repo not found!", model_name)
|
48 |
+
model_data[AutoEvalColumn.license.name] = "?"
|
49 |
+
model_data[AutoEvalColumn.likes.name] = 0
|
50 |
+
model_data[AutoEvalColumn.params.name] = get_model_size(model_name, None)
|
51 |
+
continue
|
52 |
+
>>>>>>> 6e79cea283b9033350b77806ca64c34a2e0cd323
|
53 |
|
54 |
model_data[AutoEvalColumn.license.name] = get_model_license(model_info)
|
55 |
model_data[AutoEvalColumn.likes.name] = get_model_likes(model_info)
|
|
|
64 |
try:
|
65 |
return model_info.cardData["license"]
|
66 |
except Exception:
|
67 |
+
return "?"
|
68 |
|
69 |
|
70 |
def get_model_likes(model_info):
|
|
|
84 |
size = size_match.group(0)
|
85 |
return round(float(size[:-1]) if size[-1] == "b" else float(size[:-1]) / 1e3, 3)
|
86 |
except AttributeError:
|
87 |
+
return 0
|
88 |
|
89 |
|
90 |
def get_model_type(leaderboard_data: List[dict]):
|
src/display_models/model_metadata_type.py
CHANGED
@@ -22,6 +22,8 @@ class ModelType(Enum):
|
|
22 |
|
23 |
MODEL_TYPE_METADATA: Dict[str, ModelType] = {
|
24 |
"tiiuae/falcon-180B": ModelType.PT,
|
|
|
|
|
25 |
"Qwen/Qwen-7B": ModelType.PT,
|
26 |
"Qwen/Qwen-7B-Chat": ModelType.RL,
|
27 |
"notstoic/PygmalionCoT-7b": ModelType.IFT,
|
|
|
22 |
|
23 |
MODEL_TYPE_METADATA: Dict[str, ModelType] = {
|
24 |
"tiiuae/falcon-180B": ModelType.PT,
|
25 |
+
"tiiuae/falcon-180B-chat": ModelType.RL,
|
26 |
+
"microsoft/phi-1_5": ModelType.PT,
|
27 |
"Qwen/Qwen-7B": ModelType.PT,
|
28 |
"Qwen/Qwen-7B-Chat": ModelType.RL,
|
29 |
"notstoic/PygmalionCoT-7b": ModelType.IFT,
|
src/display_models/read_results.py
CHANGED
@@ -27,7 +27,7 @@ class EvalResult:
|
|
27 |
results: dict
|
28 |
precision: str = ""
|
29 |
model_type: str = ""
|
30 |
-
weight_type: str = ""
|
31 |
date: str = ""
|
32 |
|
33 |
def to_dict(self):
|
|
|
27 |
results: dict
|
28 |
precision: str = ""
|
29 |
model_type: str = ""
|
30 |
+
weight_type: str = "Original"
|
31 |
date: str = ""
|
32 |
|
33 |
def to_dict(self):
|