Spaces:
Runtime error
Runtime error
File size: 5,883 Bytes
4531600 d8e1a3b 4531600 d8e1a3b 4531600 d8e1a3b 4531600 d8e1a3b 4531600 d8e1a3b 4531600 d8e1a3b 4531600 d8e1a3b 4531600 d8e1a3b 4531600 d8e1a3b 4531600 d8e1a3b 4531600 d8e1a3b 4531600 d8e1a3b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
import streamlit as st
import open_clip
import torch
import requests
from PIL import Image
from io import BytesIO
import time
import json
import numpy as np
# Load model and tokenizer
@st.cache_resource
def load_model():
model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionSigLIP')
tokenizer = open_clip.get_tokenizer('hf-hub:Marqo/marqo-fashionSigLIP')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
return model, preprocess_val, tokenizer, device
model, preprocess_val, tokenizer, device = load_model()
# Load and process data
@st.cache_data
def load_data():
with open('./musinsa-final.json', 'r', encoding='utf-8') as f:
return json.load(f)
data = load_data()
# Helper functions
def load_image_from_url(url, max_retries=3):
for attempt in range(max_retries):
try:
response = requests.get(url, timeout=10)
response.raise_for_status()
img = Image.open(BytesIO(response.content)).convert('RGB')
return img
except (requests.RequestException, Image.UnidentifiedImageError) as e:
#st.warning(f"Attempt {attempt + 1} failed: {str(e)}")
if attempt < max_retries - 1:
time.sleep(1)
else:
#st.error(f"Failed to load image from {url} after {max_retries} attempts")
return None
def get_image_embedding_from_url(image_url):
image = load_image_from_url(image_url)
if image is None:
return None
image_tensor = preprocess_val(image).unsqueeze(0).to(device)
with torch.no_grad():
image_features = model.encode_image(image_tensor)
image_features /= image_features.norm(dim=-1, keepdim=True)
return image_features.cpu().numpy()
@st.cache_data
def process_database():
database_embeddings = []
database_info = []
for item in data:
image_url = item['이미지 링크'][0]
embedding = get_image_embedding_from_url(image_url)
if embedding is not None:
database_embeddings.append(embedding)
database_info.append({
'id': item['\ufeff상품 ID'],
'category': item['카테고리'],
'brand': item['브랜드명'],
'name': item['제품명'],
'price': item['정가'],
'discount': item['할인율'],
'image_url': image_url
})
else:
st.warning(f"Skipping item {item['상품 ID']} due to image loading failure")
if database_embeddings:
return np.vstack(database_embeddings), database_info
else:
st.error("No valid embeddings were generated.")
return None, None
database_embeddings, database_info = process_database()
def get_text_embedding(text):
text_tokens = tokenizer([text]).to(device)
with torch.no_grad():
text_features = model.encode_text(text_tokens)
text_features /= text_features.norm(dim=-1, keepdim=True)
return text_features.cpu().numpy()
def find_similar_images(query_embedding, top_k=5):
similarities = np.dot(database_embeddings, query_embedding.T).squeeze()
top_indices = np.argsort(similarities)[::-1][:top_k]
results = []
for idx in top_indices:
results.append({
'info': database_info[idx],
'similarity': similarities[idx]
})
return results
# Streamlit app
st.title("Fashion Search App")
search_type = st.radio("Search by:", ("Image URL", "Text"))
if search_type == "Image URL":
query_image_url = st.text_input("Enter image URL:")
if st.button("Search by Image"):
if query_image_url:
query_embedding = get_image_embedding_from_url(query_image_url)
if query_embedding is not None:
similar_images = find_similar_images(query_embedding)
st.image(query_image_url, caption="Query Image", use_column_width=True)
st.subheader("Similar Items:")
for img in similar_images:
col1, col2 = st.columns(2)
with col1:
st.image(img['info']['image_url'], use_column_width=True)
with col2:
st.write(f"Name: {img['info']['name']}")
st.write(f"Brand: {img['info']['brand']}")
st.write(f"Category: {img['info']['category']}")
st.write(f"Price: {img['info']['price']}")
st.write(f"Discount: {img['info']['discount']}%")
st.write(f"Similarity: {img['similarity']:.2f}")
else:
st.error("Failed to process the image. Please try another URL.")
else:
st.warning("Please enter an image URL.")
else: # Text search
query_text = st.text_input("Enter search text:")
if st.button("Search by Text"):
if query_text:
text_embedding = get_text_embedding(query_text)
similar_images = find_similar_images(text_embedding)
st.subheader("Similar Items:")
for img in similar_images:
col1, col2 = st.columns(2)
with col1:
st.image(img['info']['image_url'], use_column_width=True)
with col2:
st.write(f"Name: {img['info']['name']}")
st.write(f"Brand: {img['info']['brand']}")
st.write(f"Category: {img['info']['category']}")
st.write(f"Price: {img['info']['price']}")
st.write(f"Discount: {img['info']['discount']}%")
st.write(f"Similarity: {img['similarity']:.2f}")
else:
st.warning("Please enter a search text.") |