File size: 5,883 Bytes
4531600
 
 
 
 
 
 
 
 
 
 
 
 
d8e1a3b
 
4531600
 
 
 
 
 
 
 
 
d8e1a3b
4531600
 
 
 
 
d8e1a3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4531600
 
 
d8e1a3b
4531600
 
 
 
d8e1a3b
4531600
 
d8e1a3b
4531600
 
d8e1a3b
4531600
 
d8e1a3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4531600
 
d8e1a3b
4531600
 
d8e1a3b
 
 
 
 
 
 
 
 
 
4531600
d8e1a3b
4531600
 
 
 
 
 
 
 
 
 
 
 
d8e1a3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import streamlit as st
import open_clip
import torch
import requests
from PIL import Image
from io import BytesIO
import time
import json
import numpy as np

# Load model and tokenizer
@st.cache_resource
def load_model():
    model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionSigLIP')
    tokenizer = open_clip.get_tokenizer('hf-hub:Marqo/marqo-fashionSigLIP')
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model.to(device)
    return model, preprocess_val, tokenizer, device

model, preprocess_val, tokenizer, device = load_model()

# Load and process data
@st.cache_data
def load_data():
    with open('./musinsa-final.json', 'r', encoding='utf-8') as f:
        return json.load(f)

data = load_data()

# Helper functions
def load_image_from_url(url, max_retries=3):
    for attempt in range(max_retries):
        try:
            response = requests.get(url, timeout=10)
            response.raise_for_status()
            img = Image.open(BytesIO(response.content)).convert('RGB')
            return img
        except (requests.RequestException, Image.UnidentifiedImageError) as e:
            #st.warning(f"Attempt {attempt + 1} failed: {str(e)}")
            if attempt < max_retries - 1:
                time.sleep(1)
            else:
                #st.error(f"Failed to load image from {url} after {max_retries} attempts")
                return None

def get_image_embedding_from_url(image_url):
    image = load_image_from_url(image_url)
    if image is None:
        return None

    image_tensor = preprocess_val(image).unsqueeze(0).to(device)

    with torch.no_grad():
        image_features = model.encode_image(image_tensor)
        image_features /= image_features.norm(dim=-1, keepdim=True)

    return image_features.cpu().numpy()

@st.cache_data
def process_database():
    database_embeddings = []
    database_info = []

    for item in data:
        image_url = item['이미지 링크'][0]
        embedding = get_image_embedding_from_url(image_url)

        if embedding is not None:
            database_embeddings.append(embedding)
            database_info.append({
                'id': item['\ufeff상품 ID'],
                'category': item['카테고리'],
                'brand': item['브랜드명'],
                'name': item['제품명'],
                'price': item['정가'],
                'discount': item['할인율'],
                'image_url': image_url
            })
        else:
            st.warning(f"Skipping item {item['상품 ID']} due to image loading failure")

    if database_embeddings:
        return np.vstack(database_embeddings), database_info
    else:
        st.error("No valid embeddings were generated.")
        return None, None

database_embeddings, database_info = process_database()

def get_text_embedding(text):
    text_tokens = tokenizer([text]).to(device)

    with torch.no_grad():
        text_features = model.encode_text(text_tokens)
        text_features /= text_features.norm(dim=-1, keepdim=True)

    return text_features.cpu().numpy()

def find_similar_images(query_embedding, top_k=5):
    similarities = np.dot(database_embeddings, query_embedding.T).squeeze()
    top_indices = np.argsort(similarities)[::-1][:top_k]

    results = []
    for idx in top_indices:
        results.append({
            'info': database_info[idx],
            'similarity': similarities[idx]
        })

    return results

# Streamlit app
st.title("Fashion Search App")

search_type = st.radio("Search by:", ("Image URL", "Text"))

if search_type == "Image URL":
    query_image_url = st.text_input("Enter image URL:")
    if st.button("Search by Image"):
        if query_image_url:
            query_embedding = get_image_embedding_from_url(query_image_url)
            if query_embedding is not None:
                similar_images = find_similar_images(query_embedding)
                st.image(query_image_url, caption="Query Image", use_column_width=True)
                st.subheader("Similar Items:")
                for img in similar_images:
                    col1, col2 = st.columns(2)
                    with col1:
                        st.image(img['info']['image_url'], use_column_width=True)
                    with col2:
                        st.write(f"Name: {img['info']['name']}")
                        st.write(f"Brand: {img['info']['brand']}")
                        st.write(f"Category: {img['info']['category']}")
                        st.write(f"Price: {img['info']['price']}")
                        st.write(f"Discount: {img['info']['discount']}%")
                        st.write(f"Similarity: {img['similarity']:.2f}")
            else:
                st.error("Failed to process the image. Please try another URL.")
        else:
            st.warning("Please enter an image URL.")

else:  # Text search
    query_text = st.text_input("Enter search text:")
    if st.button("Search by Text"):
        if query_text:
            text_embedding = get_text_embedding(query_text)
            similar_images = find_similar_images(text_embedding)
            st.subheader("Similar Items:")
            for img in similar_images:
                col1, col2 = st.columns(2)
                with col1:
                    st.image(img['info']['image_url'], use_column_width=True)
                with col2:
                    st.write(f"Name: {img['info']['name']}")
                    st.write(f"Brand: {img['info']['brand']}")
                    st.write(f"Category: {img['info']['category']}")
                    st.write(f"Price: {img['info']['price']}")
                    st.write(f"Discount: {img['info']['discount']}%")
                    st.write(f"Similarity: {img['similarity']:.2f}")
        else:
            st.warning("Please enter a search text.")