Spaces:
Runtime error
Runtime error
File size: 11,792 Bytes
543b03f 717d9b3 543b03f d77b7a4 054c8f7 543b03f 717d9b3 543b03f f388a49 543b03f f388a49 bc3fea2 8b3d9ea 165b6cf 8b3d9ea 543b03f a0e438d 543b03f 9153745 543b03f ed40fd9 8b3d9ea d77b7a4 8b3d9ea d77b7a4 8b3d9ea d77b7a4 8b3d9ea 9153745 7917a23 8b3d9ea 9153745 ed40fd9 9153745 a0e438d ed40fd9 9153745 ed40fd9 8b3d9ea d77b7a4 8b3d9ea d77b7a4 8b3d9ea 543b03f 8b3d9ea 717d9b3 8b3d9ea 717d9b3 543b03f f388a49 543b03f f388a49 543b03f f388a49 543b03f 717d9b3 b757e27 717d9b3 8b3d9ea 717d9b3 b757e27 543b03f b757e27 543b03f b757e27 543b03f b757e27 f43a9e6 b757e27 f43a9e6 b757e27 d77b7a4 b757e27 717d9b3 b757e27 8b3d9ea b757e27 ce67f34 8b3d9ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
import streamlit as st
import open_clip
import torch
import requests
from PIL import Image
from io import BytesIO
import time
import json
import numpy as np
from ultralytics import YOLO
import cv2
import chromadb
# Load CLIP model and tokenizer
@st.cache_resource
def load_clip_model():
model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionSigLIP')
tokenizer = open_clip.get_tokenizer('hf-hub:Marqo/marqo-fashionSigLIP')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
return model, preprocess_val, tokenizer, device
clip_model, preprocess_val, tokenizer, device = load_clip_model()
# Load YOLOv8 model
@st.cache_resource
def load_yolo_model():
return YOLO("./best.pt")
yolo_model = load_yolo_model()
# Load ChromaDB
@st.cache_resource
def load_chromadb():
client = chromadb.PersistentClient(path="./chromadb_new")
collection = client.get_collection(name="clothes_items_musinsa_sumin")
return collection
collection = load_chromadb()
# Helper functions
def load_image_from_url(url, max_retries=3):
for attempt in range(max_retries):
try:
response = requests.get(url, timeout=10)
response.raise_for_status()
img = Image.open(BytesIO(response.content)).convert('RGB')
return img
except (requests.RequestException, Image.UnidentifiedImageError) as e:
if attempt < max_retries - 1:
time.sleep(1)
else:
return None
# get_image_embedding ν¨μ μμ
def get_image_embedding(image):
image_tensor = preprocess_val(image).unsqueeze(0).to(device)
with torch.no_grad():
image_features = clip_model.encode_image(image_tensor)
image_features /= image_features.norm(dim=-1, keepdim=True)
return image_features.cpu().numpy().squeeze().tolist() # numpy λ°°μ΄μ νμ΄μ¬ 리μ€νΈλ‘ λ³ν
def get_text_embedding(text):
text_tokens = tokenizer([text]).to(device)
with torch.no_grad():
text_features = clip_model.encode_text(text_tokens)
text_features /= text_features.norm(dim=-1, keepdim=True)
return text_features.cpu().numpy()
def get_average_embedding(main_image_url, additional_image_urls):
embeddings = []
# λ©μΈ μ΄λ―Έμ§ μλ² λ©
main_image = load_image_from_url(main_image_url)
if main_image:
embeddings.append(get_image_embedding(main_image))
# μΆκ° μ΄λ―Έμ§ μλ² λ©
for url in additional_image_urls:
img = load_image_from_url(url)
if img:
embeddings.append(get_image_embedding(img))
if embeddings:
avg_embedding = np.mean(embeddings, axis=0)
return avg_embedding if isinstance(avg_embedding, np.ndarray) else avg_embedding
else:
return None
def update_collection_embeddings():
all_ids = collection.get(include=['metadatas'])['ids']
all_metadata = collection.get(include=['metadatas'])['metadatas']
batch_size = 100 # ν λ²μ μ²λ¦¬ν μμ΄ν
μ
for i in range(0, len(all_ids), batch_size):
batch_ids = all_ids[i:i+batch_size]
batch_metadata = all_metadata[i:i+batch_size]
batch_embeddings = []
valid_ids = []
for id, metadata in zip(batch_ids, batch_metadata):
main_image_url = metadata['image_url']
additional_image_urls = metadata.get('additional_images', [])
try:
avg_embedding = get_average_embedding(main_image_url, additional_image_urls)
if avg_embedding is not None:
batch_embeddings.append(avg_embedding)
valid_ids.append(id)
else:
st.warning(f"Failed to generate embedding for item {id}")
except Exception as e:
st.error(f"Error processing item {id}: {str(e)}")
if valid_ids:
try:
collection.update(
ids=valid_ids,
embeddings=batch_embeddings
)
st.success(f"Updated embeddings for {len(valid_ids)} items")
except Exception as e:
st.error(f"Error updating embeddings: {str(e)}")
st.error(f"First embedding type: {type(batch_embeddings[0])}")
st.error(f"First embedding length: {len(batch_embeddings[0])}")
st.error(f"First embedding: {batch_embeddings[0][:10]}...") # μ²μ 10κ° μμλ§ μΆλ ₯
# μ§ν μν© νμ
st.progress((i + batch_size) / len(all_ids))
def find_similar_images(query_embedding, collection, top_k=5):
results = collection.query(
query_embeddings=[query_embedding.squeeze().tolist()],
n_results=top_k,
include=["metadatas", "distances"]
)
similar_items = []
for metadata, distance in zip(results['metadatas'][0], results['distances'][0]):
similar_items.append({
'info': metadata,
'similarity': 1 - distance # 거리λ₯Ό μ μ¬λλ‘ λ³ν
})
return similar_items
def update_collection_embeddings():
all_ids = collection.get(include=['metadatas'])['ids']
all_metadata = collection.get(include=['metadatas'])['metadatas']
for id, metadata in zip(all_ids, all_metadata):
main_image_url = metadata['image_url']
additional_image_urls = metadata.get('additional_images', [])
avg_embedding = get_average_embedding(main_image_url, additional_image_urls)
if avg_embedding is not None:
collection.update(
ids=[id],
embeddings=[avg_embedding.tolist()]
)
def detect_clothing(image):
results = yolo_model(image)
detections = results[0].boxes.data.cpu().numpy()
categories = []
for detection in detections:
x1, y1, x2, y2, conf, cls = detection
category = yolo_model.names[int(cls)]
if category in ['sunglass','hat','jacket','shirt','pants','shorts','skirt','dress','bag','shoe']:
categories.append({
'category': category,
'bbox': [int(x1), int(y1), int(x2), int(y2)],
'confidence': conf
})
return categories
def crop_image(image, bbox):
return image.crop((bbox[0], bbox[1], bbox[2], bbox[3]))
# μΈμ
μν μ΄κΈ°ν
if 'step' not in st.session_state:
st.session_state.step = 'input'
if 'query_image_url' not in st.session_state:
st.session_state.query_image_url = ''
if 'detections' not in st.session_state:
st.session_state.detections = []
if 'selected_category' not in st.session_state:
st.session_state.selected_category = None
# Streamlit app
st.title("Advanced Fashion Search App")
# 컬λ μ
μλ² λ© μ
λ°μ΄νΈ (첫 μ€ν μ ν λ²λ§)
if 'embeddings_updated' not in st.session_state:
with st.spinner("Updating collection embeddings... This may take a while."):
update_collection_embeddings()
st.session_state.embeddings_updated = True
# λ¨κ³λ³ μ²λ¦¬
if st.session_state.step == 'input':
st.session_state.query_image_url = st.text_input("Enter image URL:", st.session_state.query_image_url)
if st.button("Detect Clothing"):
if st.session_state.query_image_url:
query_image = load_image_from_url(st.session_state.query_image_url)
if query_image is not None:
st.session_state.query_image = query_image
st.session_state.detections = detect_clothing(query_image)
if st.session_state.detections:
st.session_state.step = 'select_category'
else:
st.warning("No clothing items detected in the image.")
else:
st.error("Failed to load the image. Please try another URL.")
else:
st.warning("Please enter an image URL.")
elif st.session_state.step == 'select_category':
st.image(st.session_state.query_image, caption="Query Image", use_column_width=True)
st.subheader("Detected Clothing Items:")
for detection in st.session_state.detections:
col1, col2 = st.columns([1, 3])
with col1:
st.write(f"{detection['category']} (Confidence: {detection['confidence']:.2f})")
with col2:
cropped_image = crop_image(st.session_state.query_image, detection['bbox'])
st.image(cropped_image, caption=detection['category'], use_column_width=True)
options = [f"{d['category']} (Confidence: {d['confidence']:.2f})" for d in st.session_state.detections]
selected_option = st.selectbox("Select a category to search:", options)
if st.button("Search Similar Items"):
st.session_state.selected_category = selected_option
st.session_state.step = 'show_results'
elif st.session_state.step == 'show_results':
st.image(st.session_state.query_image, caption="Query Image", use_column_width=True)
selected_detection = next(d for d in st.session_state.detections
if f"{d['category']} (Confidence: {d['confidence']:.2f})" == st.session_state.selected_category)
cropped_image = crop_image(st.session_state.query_image, selected_detection['bbox'])
st.image(cropped_image, caption="Cropped Image", use_column_width=True)
query_embedding = get_image_embedding(cropped_image)
similar_images = find_similar_images(query_embedding, collection)
st.subheader("Similar Items:")
for img in similar_images:
col1, col2 = st.columns(2)
with col1:
st.image(img['info']['image_url'], use_column_width=True)
with col2:
st.write(f"Name: {img['info']['name']}")
st.write(f"Brand: {img['info']['brand']}")
category = img['info'].get('category')
if category:
st.write(f"Category: {category}")
st.write(f"Price: {img['info']['price']}")
st.write(f"Discount: {img['info']['discount']}%")
st.write(f"Similarity: {img['similarity']:.2f}")
# μΆκ° μ΄λ―Έμ§ νμ
additional_images = img['info'].get('additional_images', [])
if additional_images:
st.write("Additional Images:")
for add_img_url in additional_images[:3]: # μ΅λ 3κ°κΉμ§λ§ νμ
st.image(add_img_url, width=100)
if st.button("Start New Search"):
st.session_state.step = 'input'
st.session_state.query_image_url = ''
st.session_state.detections = []
st.session_state.selected_category = None
# Text search
st.sidebar.title("Text Search")
query_text = st.sidebar.text_input("Enter search text:")
if st.sidebar.button("Search by Text"):
if query_text:
text_embedding = get_text_embedding(query_text)
similar_images = find_similar_images(text_embedding, collection)
st.sidebar.subheader("Similar Items:")
for img in similar_images:
st.sidebar.image(img['info']['image_url'], use_column_width=True)
st.sidebar.write(f"Name: {img['info']['name']}")
st.sidebar.write(f"Brand: {img['info']['brand']}")
category = img['info'].get('category')
if category:
st.sidebar.write(f"Category: {category}")
st.sidebar.write(f"Price: {img['info']['price']}")
st.sidebar.write(f"Discount: {img['info']['discount']}%")
st.sidebar.write(f"Similarity: {img['similarity']:.2f}")
else:
st.sidebar.warning("Please enter a search text.") |