File size: 11,792 Bytes
543b03f
 
 
 
 
 
 
 
 
717d9b3
543b03f
d77b7a4
054c8f7
543b03f
 
 
 
 
 
 
 
 
 
 
717d9b3
543b03f
f388a49
 
543b03f
f388a49
bc3fea2
8b3d9ea
 
 
 
165b6cf
8b3d9ea
 
 
 
543b03f
 
 
 
 
 
 
 
 
 
 
 
 
 
a0e438d
543b03f
 
 
 
 
9153745
543b03f
 
 
 
 
 
 
ed40fd9
8b3d9ea
 
d77b7a4
8b3d9ea
 
 
 
d77b7a4
8b3d9ea
 
 
 
 
d77b7a4
8b3d9ea
9153745
7917a23
8b3d9ea
 
 
9153745
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed40fd9
9153745
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0e438d
ed40fd9
9153745
 
 
ed40fd9
 
8b3d9ea
 
 
 
 
 
d77b7a4
8b3d9ea
 
 
d77b7a4
8b3d9ea
543b03f
8b3d9ea
 
717d9b3
8b3d9ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
717d9b3
543b03f
f388a49
 
543b03f
f388a49
 
 
 
543b03f
 
f388a49
 
543b03f
 
 
 
 
 
717d9b3
b757e27
 
 
 
 
 
 
 
 
717d9b3
 
 
8b3d9ea
 
 
 
 
 
717d9b3
b757e27
 
543b03f
b757e27
 
543b03f
b757e27
 
 
 
543b03f
 
 
 
 
 
 
b757e27
 
 
f43a9e6
 
 
 
 
 
 
 
 
b757e27
 
f43a9e6
b757e27
 
 
 
 
 
 
 
 
 
 
d77b7a4
b757e27
 
 
 
 
 
 
 
 
717d9b3
 
 
b757e27
 
 
8b3d9ea
 
 
 
 
 
 
b757e27
 
 
 
 
 
ce67f34
8b3d9ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import streamlit as st
import open_clip
import torch
import requests
from PIL import Image
from io import BytesIO
import time
import json
import numpy as np
from ultralytics import YOLO
import cv2
import chromadb

# Load CLIP model and tokenizer
@st.cache_resource
def load_clip_model():
    model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionSigLIP')
    tokenizer = open_clip.get_tokenizer('hf-hub:Marqo/marqo-fashionSigLIP')
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model.to(device)
    return model, preprocess_val, tokenizer, device

clip_model, preprocess_val, tokenizer, device = load_clip_model()

# Load YOLOv8 model
@st.cache_resource
def load_yolo_model():
    return YOLO("./best.pt")

yolo_model = load_yolo_model()

# Load ChromaDB
@st.cache_resource
def load_chromadb():
    client = chromadb.PersistentClient(path="./chromadb_new")
    collection = client.get_collection(name="clothes_items_musinsa_sumin")
    return collection

collection = load_chromadb()

# Helper functions
def load_image_from_url(url, max_retries=3):
    for attempt in range(max_retries):
        try:
            response = requests.get(url, timeout=10)
            response.raise_for_status()
            img = Image.open(BytesIO(response.content)).convert('RGB')
            return img
        except (requests.RequestException, Image.UnidentifiedImageError) as e:
            if attempt < max_retries - 1:
                time.sleep(1)
            else:
                return None

# get_image_embedding ν•¨μˆ˜ μˆ˜μ •
def get_image_embedding(image):
    image_tensor = preprocess_val(image).unsqueeze(0).to(device)
    with torch.no_grad():
        image_features = clip_model.encode_image(image_tensor)
        image_features /= image_features.norm(dim=-1, keepdim=True)
    return image_features.cpu().numpy().squeeze().tolist()  # numpy 배열을 파이썬 리슀트둜 λ³€ν™˜

def get_text_embedding(text):
    text_tokens = tokenizer([text]).to(device)
    with torch.no_grad():
        text_features = clip_model.encode_text(text_tokens)
        text_features /= text_features.norm(dim=-1, keepdim=True)
    return text_features.cpu().numpy()
    
def get_average_embedding(main_image_url, additional_image_urls):
    embeddings = []
    
    # 메인 이미지 μž„λ² λ”©
    main_image = load_image_from_url(main_image_url)
    if main_image:
        embeddings.append(get_image_embedding(main_image))
    
    # μΆ”κ°€ 이미지 μž„λ² λ”©
    for url in additional_image_urls:
        img = load_image_from_url(url)
        if img:
            embeddings.append(get_image_embedding(img))
    
    if embeddings:
        avg_embedding = np.mean(embeddings, axis=0)
        return avg_embedding if isinstance(avg_embedding, np.ndarray) else avg_embedding
    else:
        return None

def update_collection_embeddings():
    all_ids = collection.get(include=['metadatas'])['ids']
    all_metadata = collection.get(include=['metadatas'])['metadatas']
    
    batch_size = 100  # ν•œ λ²ˆμ— μ²˜λ¦¬ν•  μ•„μ΄ν…œ 수
    for i in range(0, len(all_ids), batch_size):
        batch_ids = all_ids[i:i+batch_size]
        batch_metadata = all_metadata[i:i+batch_size]
        
        batch_embeddings = []
        valid_ids = []
        
        for id, metadata in zip(batch_ids, batch_metadata):
            main_image_url = metadata['image_url']
            additional_image_urls = metadata.get('additional_images', [])
            
            try:
                avg_embedding = get_average_embedding(main_image_url, additional_image_urls)
                if avg_embedding is not None:
                    batch_embeddings.append(avg_embedding)
                    valid_ids.append(id)
                else:
                    st.warning(f"Failed to generate embedding for item {id}")
            except Exception as e:
                st.error(f"Error processing item {id}: {str(e)}")
        
        if valid_ids:
            try:
                collection.update(
                    ids=valid_ids,
                    embeddings=batch_embeddings
                )
                st.success(f"Updated embeddings for {len(valid_ids)} items")
            except Exception as e:
                st.error(f"Error updating embeddings: {str(e)}")
                st.error(f"First embedding type: {type(batch_embeddings[0])}")
                st.error(f"First embedding length: {len(batch_embeddings[0])}")
                st.error(f"First embedding: {batch_embeddings[0][:10]}...")  # 처음 10개 μš”μ†Œλ§Œ 좜λ ₯
        
        # 진행 상황 ν‘œμ‹œ
        st.progress((i + batch_size) / len(all_ids))

        
def find_similar_images(query_embedding, collection, top_k=5):
    results = collection.query(
        query_embeddings=[query_embedding.squeeze().tolist()],
        n_results=top_k,
        include=["metadatas", "distances"]
    )
    
    similar_items = []
    for metadata, distance in zip(results['metadatas'][0], results['distances'][0]):
        similar_items.append({
            'info': metadata,
            'similarity': 1 - distance  # 거리λ₯Ό μœ μ‚¬λ„λ‘œ λ³€ν™˜
        })
    
    return similar_items

def update_collection_embeddings():
    all_ids = collection.get(include=['metadatas'])['ids']
    all_metadata = collection.get(include=['metadatas'])['metadatas']
    
    for id, metadata in zip(all_ids, all_metadata):
        main_image_url = metadata['image_url']
        additional_image_urls = metadata.get('additional_images', [])
        
        avg_embedding = get_average_embedding(main_image_url, additional_image_urls)
        
        if avg_embedding is not None:
            collection.update(
                ids=[id],
                embeddings=[avg_embedding.tolist()]
            )

def detect_clothing(image):
    results = yolo_model(image)
    detections = results[0].boxes.data.cpu().numpy()
    categories = []
    for detection in detections:
        x1, y1, x2, y2, conf, cls = detection
        category = yolo_model.names[int(cls)]
        if category in ['sunglass','hat','jacket','shirt','pants','shorts','skirt','dress','bag','shoe']:
            categories.append({
                'category': category,
                'bbox': [int(x1), int(y1), int(x2), int(y2)],
                'confidence': conf
            })
    return categories

def crop_image(image, bbox):
    return image.crop((bbox[0], bbox[1], bbox[2], bbox[3]))

# μ„Έμ…˜ μƒνƒœ μ΄ˆκΈ°ν™”
if 'step' not in st.session_state:
    st.session_state.step = 'input'
if 'query_image_url' not in st.session_state:
    st.session_state.query_image_url = ''
if 'detections' not in st.session_state:
    st.session_state.detections = []
if 'selected_category' not in st.session_state:
    st.session_state.selected_category = None

# Streamlit app
st.title("Advanced Fashion Search App")

# μ»¬λ ‰μ…˜ μž„λ² λ”© μ—…λ°μ΄νŠΈ (첫 μ‹€ν–‰ μ‹œ ν•œ 번만)
if 'embeddings_updated' not in st.session_state:
    with st.spinner("Updating collection embeddings... This may take a while."):
        update_collection_embeddings()
    st.session_state.embeddings_updated = True

# 단계별 처리
if st.session_state.step == 'input':
    st.session_state.query_image_url = st.text_input("Enter image URL:", st.session_state.query_image_url)
    if st.button("Detect Clothing"):
        if st.session_state.query_image_url:
            query_image = load_image_from_url(st.session_state.query_image_url)
            if query_image is not None:
                st.session_state.query_image = query_image
                st.session_state.detections = detect_clothing(query_image)
                if st.session_state.detections:
                    st.session_state.step = 'select_category'
                else:
                    st.warning("No clothing items detected in the image.")
            else:
                st.error("Failed to load the image. Please try another URL.")
        else:
            st.warning("Please enter an image URL.")

elif st.session_state.step == 'select_category':
    st.image(st.session_state.query_image, caption="Query Image", use_column_width=True)
    st.subheader("Detected Clothing Items:")
    
    for detection in st.session_state.detections:
        col1, col2 = st.columns([1, 3])
        with col1:
            st.write(f"{detection['category']} (Confidence: {detection['confidence']:.2f})")
        with col2:
            cropped_image = crop_image(st.session_state.query_image, detection['bbox'])
            st.image(cropped_image, caption=detection['category'], use_column_width=True)
    
    options = [f"{d['category']} (Confidence: {d['confidence']:.2f})" for d in st.session_state.detections]
    selected_option = st.selectbox("Select a category to search:", options)
    
    if st.button("Search Similar Items"):
        st.session_state.selected_category = selected_option
        st.session_state.step = 'show_results'

elif st.session_state.step == 'show_results':
    st.image(st.session_state.query_image, caption="Query Image", use_column_width=True)
    selected_detection = next(d for d in st.session_state.detections 
                              if f"{d['category']} (Confidence: {d['confidence']:.2f})" == st.session_state.selected_category)
    cropped_image = crop_image(st.session_state.query_image, selected_detection['bbox'])
    st.image(cropped_image, caption="Cropped Image", use_column_width=True)
    query_embedding = get_image_embedding(cropped_image)
    similar_images = find_similar_images(query_embedding, collection)
    
    st.subheader("Similar Items:")
    for img in similar_images:
        col1, col2 = st.columns(2)
        with col1:
            st.image(img['info']['image_url'], use_column_width=True)
        with col2:
            st.write(f"Name: {img['info']['name']}")
            st.write(f"Brand: {img['info']['brand']}")
            category = img['info'].get('category')
            if category:  
                st.write(f"Category: {category}")
            st.write(f"Price: {img['info']['price']}")
            st.write(f"Discount: {img['info']['discount']}%")
            st.write(f"Similarity: {img['similarity']:.2f}")
            
            # μΆ”κ°€ 이미지 ν‘œμ‹œ
            additional_images = img['info'].get('additional_images', [])
            if additional_images:
                st.write("Additional Images:")
                for add_img_url in additional_images[:3]:  # μ΅œλŒ€ 3κ°œκΉŒμ§€λ§Œ ν‘œμ‹œ
                    st.image(add_img_url, width=100)
    
    if st.button("Start New Search"):
        st.session_state.step = 'input'
        st.session_state.query_image_url = ''
        st.session_state.detections = []
        st.session_state.selected_category = None

# Text search
st.sidebar.title("Text Search")
query_text = st.sidebar.text_input("Enter search text:")
if st.sidebar.button("Search by Text"):
    if query_text:
        text_embedding = get_text_embedding(query_text)
        similar_images = find_similar_images(text_embedding, collection)
        st.sidebar.subheader("Similar Items:")
        for img in similar_images:
            st.sidebar.image(img['info']['image_url'], use_column_width=True)
            st.sidebar.write(f"Name: {img['info']['name']}")
            st.sidebar.write(f"Brand: {img['info']['brand']}")
            category = img['info'].get('category')
            if category:
                st.sidebar.write(f"Category: {category}")
            st.sidebar.write(f"Price: {img['info']['price']}")
            st.sidebar.write(f"Discount: {img['info']['discount']}%")
            st.sidebar.write(f"Similarity: {img['similarity']:.2f}")
    else:
        st.sidebar.warning("Please enter a search text.")