itda-nosegmentation / app-first.py
leedoming's picture
Rename app.py to app-first.py
301faf2 verified
raw
history blame
5.88 kB
import streamlit as st
import open_clip
import torch
import requests
from PIL import Image
from io import BytesIO
import time
import json
import numpy as np
# Load model and tokenizer
@st.cache_resource
def load_model():
model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionSigLIP')
tokenizer = open_clip.get_tokenizer('hf-hub:Marqo/marqo-fashionSigLIP')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
return model, preprocess_val, tokenizer, device
model, preprocess_val, tokenizer, device = load_model()
# Load and process data
@st.cache_data
def load_data():
with open('./musinsa-final.json', 'r', encoding='utf-8') as f:
return json.load(f)
data = load_data()
# Helper functions
def load_image_from_url(url, max_retries=3):
for attempt in range(max_retries):
try:
response = requests.get(url, timeout=10)
response.raise_for_status()
img = Image.open(BytesIO(response.content)).convert('RGB')
return img
except (requests.RequestException, Image.UnidentifiedImageError) as e:
#st.warning(f"Attempt {attempt + 1} failed: {str(e)}")
if attempt < max_retries - 1:
time.sleep(1)
else:
#st.error(f"Failed to load image from {url} after {max_retries} attempts")
return None
def get_image_embedding_from_url(image_url):
image = load_image_from_url(image_url)
if image is None:
return None
image_tensor = preprocess_val(image).unsqueeze(0).to(device)
with torch.no_grad():
image_features = model.encode_image(image_tensor)
image_features /= image_features.norm(dim=-1, keepdim=True)
return image_features.cpu().numpy()
@st.cache_data
def process_database():
database_embeddings = []
database_info = []
for item in data:
image_url = item['์ด๋ฏธ์ง€ ๋งํฌ'][0]
embedding = get_image_embedding_from_url(image_url)
if embedding is not None:
database_embeddings.append(embedding)
database_info.append({
'id': item['\ufeff์ƒํ’ˆ ID'],
'category': item['์นดํ…Œ๊ณ ๋ฆฌ'],
'brand': item['๋ธŒ๋žœ๋“œ๋ช…'],
'name': item['์ œํ’ˆ๋ช…'],
'price': item['์ •๊ฐ€'],
'discount': item['ํ• ์ธ์œจ'],
'image_url': image_url
})
else:
st.warning(f"Skipping item {item['๏ปฟ์ƒํ’ˆ ID']} due to image loading failure")
if database_embeddings:
return np.vstack(database_embeddings), database_info
else:
st.error("No valid embeddings were generated.")
return None, None
database_embeddings, database_info = process_database()
def get_text_embedding(text):
text_tokens = tokenizer([text]).to(device)
with torch.no_grad():
text_features = model.encode_text(text_tokens)
text_features /= text_features.norm(dim=-1, keepdim=True)
return text_features.cpu().numpy()
def find_similar_images(query_embedding, top_k=5):
similarities = np.dot(database_embeddings, query_embedding.T).squeeze()
top_indices = np.argsort(similarities)[::-1][:top_k]
results = []
for idx in top_indices:
results.append({
'info': database_info[idx],
'similarity': similarities[idx]
})
return results
# Streamlit app
st.title("Fashion Search App")
search_type = st.radio("Search by:", ("Image URL", "Text"))
if search_type == "Image URL":
query_image_url = st.text_input("Enter image URL:")
if st.button("Search by Image"):
if query_image_url:
query_embedding = get_image_embedding_from_url(query_image_url)
if query_embedding is not None:
similar_images = find_similar_images(query_embedding)
st.image(query_image_url, caption="Query Image", use_column_width=True)
st.subheader("Similar Items:")
for img in similar_images:
col1, col2 = st.columns(2)
with col1:
st.image(img['info']['image_url'], use_column_width=True)
with col2:
st.write(f"Name: {img['info']['name']}")
st.write(f"Brand: {img['info']['brand']}")
st.write(f"Category: {img['info']['category']}")
st.write(f"Price: {img['info']['price']}")
st.write(f"Discount: {img['info']['discount']}%")
st.write(f"Similarity: {img['similarity']:.2f}")
else:
st.error("Failed to process the image. Please try another URL.")
else:
st.warning("Please enter an image URL.")
else: # Text search
query_text = st.text_input("Enter search text:")
if st.button("Search by Text"):
if query_text:
text_embedding = get_text_embedding(query_text)
similar_images = find_similar_images(text_embedding)
st.subheader("Similar Items:")
for img in similar_images:
col1, col2 = st.columns(2)
with col1:
st.image(img['info']['image_url'], use_column_width=True)
with col2:
st.write(f"Name: {img['info']['name']}")
st.write(f"Brand: {img['info']['brand']}")
st.write(f"Category: {img['info']['category']}")
st.write(f"Price: {img['info']['price']}")
st.write(f"Discount: {img['info']['discount']}%")
st.write(f"Similarity: {img['similarity']:.2f}")
else:
st.warning("Please enter a search text.")