Spaces:
Runtime error
Runtime error
import streamlit as st | |
import open_clip | |
import torch | |
import requests | |
from PIL import Image | |
from io import BytesIO | |
import time | |
import json | |
import numpy as np | |
from ultralytics import YOLO | |
import cv2 | |
import chromadb | |
# Load CLIP model and tokenizer | |
def load_clip_model(): | |
model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionSigLIP') | |
tokenizer = open_clip.get_tokenizer('hf-hub:Marqo/marqo-fashionSigLIP') | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
return model, preprocess_val, tokenizer, device | |
clip_model, preprocess_val, tokenizer, device = load_clip_model() | |
# Load YOLOv8 model | |
def load_yolo_model(): | |
return YOLO("./best.pt") | |
yolo_model = load_yolo_model() | |
# Load ChromaDB | |
def load_chromadb(): | |
client = chromadb.PersistentClient(path="./chromadb_new") | |
collection = client.get_collection(name="clothes_items_musinsa_sumin") | |
return collection | |
collection = load_chromadb() | |
# Helper functions | |
def load_image_from_url(url, max_retries=3): | |
for attempt in range(max_retries): | |
try: | |
response = requests.get(url, timeout=10) | |
response.raise_for_status() | |
img = Image.open(BytesIO(response.content)).convert('RGB') | |
return img | |
except (requests.RequestException, Image.UnidentifiedImageError) as e: | |
if attempt < max_retries - 1: | |
time.sleep(1) | |
else: | |
return None | |
# get_image_embedding ν¨μ μμ | |
def get_image_embedding(image): | |
image_tensor = preprocess_val(image).unsqueeze(0).to(device) | |
with torch.no_grad(): | |
image_features = clip_model.encode_image(image_tensor) | |
image_features /= image_features.norm(dim=-1, keepdim=True) | |
return image_features.cpu().numpy().squeeze().tolist() # numpy λ°°μ΄μ νμ΄μ¬ 리μ€νΈλ‘ λ³ν | |
def get_text_embedding(text): | |
text_tokens = tokenizer([text]).to(device) | |
with torch.no_grad(): | |
text_features = clip_model.encode_text(text_tokens) | |
text_features /= text_features.norm(dim=-1, keepdim=True) | |
return text_features.cpu().numpy() | |
def get_average_embedding(main_image_url, additional_image_urls): | |
embeddings = [] | |
# λ©μΈ μ΄λ―Έμ§ μλ² λ© | |
main_image = load_image_from_url(main_image_url) | |
if main_image: | |
embeddings.append(get_image_embedding(main_image)) | |
# μΆκ° μ΄λ―Έμ§ μλ² λ© | |
for url in additional_image_urls: | |
img = load_image_from_url(url) | |
if img: | |
embeddings.append(get_image_embedding(img)) | |
if embeddings: | |
avg_embedding = np.mean(embeddings, axis=0) | |
return avg_embedding.tolist() if isinstance(avg_embedding, np.ndarray) else avg_embedding | |
else: | |
return None | |
def update_collection_embeddings(): | |
all_ids = collection.get(include=['metadatas'])['ids'] | |
all_metadata = collection.get(include=['metadatas'])['metadatas'] | |
batch_size = 100 # ν λ²μ μ²λ¦¬ν μμ΄ν μ | |
for i in range(0, len(all_ids), batch_size): | |
batch_ids = all_ids[i:i+batch_size] | |
batch_metadata = all_metadata[i:i+batch_size] | |
batch_embeddings = [] | |
valid_ids = [] | |
for id, metadata in zip(batch_ids, batch_metadata): | |
main_image_url = metadata['image_url'] | |
additional_image_urls = metadata.get('additional_images', []) | |
try: | |
avg_embedding = get_average_embedding(main_image_url, additional_image_urls) | |
if avg_embedding is not None: | |
batch_embeddings.append(avg_embedding) | |
valid_ids.append(id) | |
else: | |
st.warning(f"Failed to generate embedding for item {id}") | |
except Exception as e: | |
st.error(f"Error processing item {id}: {str(e)}") | |
if valid_ids: | |
try: | |
collection.update( | |
ids=valid_ids, | |
embeddings=batch_embeddings | |
) | |
st.success(f"Updated embeddings for {len(valid_ids)} items") | |
except Exception as e: | |
st.error(f"Error updating embeddings: {str(e)}") | |
st.error(f"First embedding type: {type(batch_embeddings[0])}") | |
st.error(f"First embedding length: {len(batch_embeddings[0])}") | |
st.error(f"First embedding: {batch_embeddings[0][:10]}...") # μ²μ 10κ° μμλ§ μΆλ ₯ | |
# μ§ν μν© νμ | |
st.progress((i + batch_size) / len(all_ids)) | |
def find_similar_images(query_embedding, collection, top_k=5): | |
results = collection.query( | |
query_embeddings=[query_embedding.squeeze().tolist()], | |
n_results=top_k, | |
include=["metadatas", "distances"] | |
) | |
similar_items = [] | |
for metadata, distance in zip(results['metadatas'][0], results['distances'][0]): | |
similar_items.append({ | |
'info': metadata, | |
'similarity': 1 - distance # 거리λ₯Ό μ μ¬λλ‘ λ³ν | |
}) | |
return similar_items | |
def update_collection_embeddings(): | |
all_ids = collection.get(include=['metadatas'])['ids'] | |
all_metadata = collection.get(include=['metadatas'])['metadatas'] | |
for id, metadata in zip(all_ids, all_metadata): | |
main_image_url = metadata['image_url'] | |
additional_image_urls = metadata.get('additional_images', []) | |
avg_embedding = get_average_embedding(main_image_url, additional_image_urls) | |
if avg_embedding is not None: | |
collection.update( | |
ids=[id], | |
embeddings=[avg_embedding.tolist()] | |
) | |
def detect_clothing(image): | |
results = yolo_model(image) | |
detections = results[0].boxes.data.cpu().numpy() | |
categories = [] | |
for detection in detections: | |
x1, y1, x2, y2, conf, cls = detection | |
category = yolo_model.names[int(cls)] | |
if category in ['sunglass','hat','jacket','shirt','pants','shorts','skirt','dress','bag','shoe']: | |
categories.append({ | |
'category': category, | |
'bbox': [int(x1), int(y1), int(x2), int(y2)], | |
'confidence': conf | |
}) | |
return categories | |
def crop_image(image, bbox): | |
return image.crop((bbox[0], bbox[1], bbox[2], bbox[3])) | |
# μΈμ μν μ΄κΈ°ν | |
if 'step' not in st.session_state: | |
st.session_state.step = 'input' | |
if 'query_image_url' not in st.session_state: | |
st.session_state.query_image_url = '' | |
if 'detections' not in st.session_state: | |
st.session_state.detections = [] | |
if 'selected_category' not in st.session_state: | |
st.session_state.selected_category = None | |
# Streamlit app | |
st.title("Advanced Fashion Search App") | |
# 컬λ μ μλ² λ© μ λ°μ΄νΈ (첫 μ€ν μ ν λ²λ§) | |
if 'embeddings_updated' not in st.session_state: | |
with st.spinner("Updating collection embeddings... This may take a while."): | |
update_collection_embeddings() | |
st.session_state.embeddings_updated = True | |
# λ¨κ³λ³ μ²λ¦¬ | |
if st.session_state.step == 'input': | |
st.session_state.query_image_url = st.text_input("Enter image URL:", st.session_state.query_image_url) | |
if st.button("Detect Clothing"): | |
if st.session_state.query_image_url: | |
query_image = load_image_from_url(st.session_state.query_image_url) | |
if query_image is not None: | |
st.session_state.query_image = query_image | |
st.session_state.detections = detect_clothing(query_image) | |
if st.session_state.detections: | |
st.session_state.step = 'select_category' | |
else: | |
st.warning("No clothing items detected in the image.") | |
else: | |
st.error("Failed to load the image. Please try another URL.") | |
else: | |
st.warning("Please enter an image URL.") | |
elif st.session_state.step == 'select_category': | |
st.image(st.session_state.query_image, caption="Query Image", use_column_width=True) | |
st.subheader("Detected Clothing Items:") | |
for detection in st.session_state.detections: | |
col1, col2 = st.columns([1, 3]) | |
with col1: | |
st.write(f"{detection['category']} (Confidence: {detection['confidence']:.2f})") | |
with col2: | |
cropped_image = crop_image(st.session_state.query_image, detection['bbox']) | |
st.image(cropped_image, caption=detection['category'], use_column_width=True) | |
options = [f"{d['category']} (Confidence: {d['confidence']:.2f})" for d in st.session_state.detections] | |
selected_option = st.selectbox("Select a category to search:", options) | |
if st.button("Search Similar Items"): | |
st.session_state.selected_category = selected_option | |
st.session_state.step = 'show_results' | |
elif st.session_state.step == 'show_results': | |
st.image(st.session_state.query_image, caption="Query Image", use_column_width=True) | |
selected_detection = next(d for d in st.session_state.detections | |
if f"{d['category']} (Confidence: {d['confidence']:.2f})" == st.session_state.selected_category) | |
cropped_image = crop_image(st.session_state.query_image, selected_detection['bbox']) | |
st.image(cropped_image, caption="Cropped Image", use_column_width=True) | |
query_embedding = get_image_embedding(cropped_image) | |
similar_images = find_similar_images(query_embedding, collection) | |
st.subheader("Similar Items:") | |
for img in similar_images: | |
col1, col2 = st.columns(2) | |
with col1: | |
st.image(img['info']['image_url'], use_column_width=True) | |
with col2: | |
st.write(f"Name: {img['info']['name']}") | |
st.write(f"Brand: {img['info']['brand']}") | |
category = img['info'].get('category') | |
if category: | |
st.write(f"Category: {category}") | |
st.write(f"Price: {img['info']['price']}") | |
st.write(f"Discount: {img['info']['discount']}%") | |
st.write(f"Similarity: {img['similarity']:.2f}") | |
# μΆκ° μ΄λ―Έμ§ νμ | |
additional_images = img['info'].get('additional_images', []) | |
if additional_images: | |
st.write("Additional Images:") | |
for add_img_url in additional_images[:3]: # μ΅λ 3κ°κΉμ§λ§ νμ | |
st.image(add_img_url, width=100) | |
if st.button("Start New Search"): | |
st.session_state.step = 'input' | |
st.session_state.query_image_url = '' | |
st.session_state.detections = [] | |
st.session_state.selected_category = None | |
# Text search | |
st.sidebar.title("Text Search") | |
query_text = st.sidebar.text_input("Enter search text:") | |
if st.sidebar.button("Search by Text"): | |
if query_text: | |
text_embedding = get_text_embedding(query_text) | |
similar_images = find_similar_images(text_embedding, collection) | |
st.sidebar.subheader("Similar Items:") | |
for img in similar_images: | |
st.sidebar.image(img['info']['image_url'], use_column_width=True) | |
st.sidebar.write(f"Name: {img['info']['name']}") | |
st.sidebar.write(f"Brand: {img['info']['brand']}") | |
category = img['info'].get('category') | |
if category: | |
st.sidebar.write(f"Category: {category}") | |
st.sidebar.write(f"Price: {img['info']['price']}") | |
st.sidebar.write(f"Discount: {img['info']['discount']}%") | |
st.sidebar.write(f"Similarity: {img['similarity']:.2f}") | |
else: | |
st.sidebar.warning("Please enter a search text.") |