Spaces:
Sleeping
Sleeping
File size: 18,309 Bytes
2dba380 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 |
import streamlit as st
import open_clip
import torch
from PIL import Image
import numpy as np
from transformers import pipeline
import chromadb
import logging
import io
import requests
from concurrent.futures import ThreadPoolExecutor
# ๋ก๊น
์ค์
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Initialize session state
if 'image' not in st.session_state:
st.session_state.image = None
if 'detected_items' not in st.session_state:
st.session_state.detected_items = None
if 'selected_item_index' not in st.session_state:
st.session_state.selected_item_index = None
if 'upload_state' not in st.session_state:
st.session_state.upload_state = 'initial'
if 'search_clicked' not in st.session_state:
st.session_state.search_clicked = False
# Load models
@st.cache_resource
def load_models():
try:
# CLIP ๋ชจ๋ธ
model, _, preprocess_val = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionSigLIP')
# ์ธ๊ทธ๋ฉํ
์ด์
๋ชจ๋ธ
segmenter = pipeline(model="mattmdjaga/segformer_b2_clothes")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
return model, preprocess_val, segmenter, device
except Exception as e:
logger.error(f"Error loading models: {e}")
raise
# ๋ชจ๋ธ ๋ก๋
clip_model, preprocess_val, segmenter, device = load_models()
# ChromaDB ์ค์
client = chromadb.PersistentClient(path="./clothesDB_11GmarketMusinsa")
collection = client.get_collection(name="clothes")
def process_segmentation(image):
"""Segmentation processing"""
try:
# pipeline ์ถ๋ ฅ ๊ฒฐ๊ณผ ์ง์ ์ฒ๋ฆฌ
output = segmenter(image)
if not output:
logger.warning("No segments found in image")
return None
# ๊ฐ ์ธ๊ทธ๋จผํธ์ ๋ง์คํฌ ํฌ๊ธฐ ๊ณ์ฐ
segment_sizes = [np.sum(seg['mask']) for seg in output]
if not segment_sizes:
return None
# ๊ฐ์ฅ ํฐ ์ธ๊ทธ๋จผํธ ์ ํ
largest_idx = np.argmax(segment_sizes)
mask = output[largest_idx]['mask']
# ๋ง์คํฌ๊ฐ numpy array๊ฐ ์๋ ๊ฒฝ์ฐ ๋ณํ
if not isinstance(mask, np.ndarray):
mask = np.array(mask)
# ๋ง์คํฌ๊ฐ 2D๊ฐ ์๋ ๊ฒฝ์ฐ ์ฒซ ๋ฒ์งธ ์ฑ๋ ์ฌ์ฉ
if len(mask.shape) > 2:
mask = mask[:, :, 0]
# bool ๋ง์คํฌ๋ฅผ float๋ก ๋ณํ
mask = mask.astype(float)
logger.info(f"Successfully created mask with shape {mask.shape}")
return mask
except Exception as e:
logger.error(f"Segmentation error: {str(e)}")
import traceback
logger.error(traceback.format_exc())
return None
def download_and_process_image(image_url, metadata_id):
"""Download image from URL and apply segmentation"""
try:
response = requests.get(image_url, timeout=10) # timeout ์ถ๊ฐ
if response.status_code != 200:
logger.error(f"Failed to download image {metadata_id}: HTTP {response.status_code}")
return None
image = Image.open(io.BytesIO(response.content)).convert('RGB')
logger.info(f"Successfully downloaded image {metadata_id}")
mask = process_segmentation(image)
if mask is not None:
features = extract_features(image, mask)
logger.info(f"Successfully extracted features for image {metadata_id}")
return features
logger.warning(f"No valid mask found for image {metadata_id}")
return None
except Exception as e:
logger.error(f"Error processing image {metadata_id}: {str(e)}")
import traceback
logger.error(traceback.format_exc())
return None
def update_db_with_segmentation():
"""DB์ ๋ชจ๋ ์ด๋ฏธ์ง์ ๋ํด segmentation์ ์ ์ฉํ๊ณ feature๋ฅผ ์
๋ฐ์ดํธ"""
try:
logger.info("Starting database update with segmentation")
# ์๋ก์ด collection ์์ฑ
try:
client.delete_collection("clothes_segmented")
logger.info("Deleted existing segmented collection")
except:
logger.info("No existing segmented collection to delete")
new_collection = client.create_collection(
name="clothes_segmented",
metadata={"description": "Clothes collection with segmentation-based features"}
)
logger.info("Created new segmented collection")
# ๊ธฐ์กด collection์์ ๋ฉํ๋ฐ์ดํฐ๋ง ๊ฐ์ ธ์ค๊ธฐ
try:
all_items = collection.get(include=['metadatas'])
total_items = len(all_items['metadatas'])
logger.info(f"Found {total_items} items in database")
except Exception as e:
logger.error(f"Error getting items from collection: {str(e)}")
# ์๋ฌ ๋ฐ์ ์ ๋น ๋ฆฌ์คํธ๋ก ์ด๊ธฐํ
all_items = {'metadatas': []}
total_items = 0
# ์งํ ์ํฉ ํ์๋ฅผ ์ํ progress bar
progress_bar = st.progress(0)
status_text = st.empty()
successful_updates = 0
failed_updates = 0
with ThreadPoolExecutor(max_workers=4) as executor:
futures = []
# ์ด๋ฏธ์ง URL์ด ์๋ ํญ๋ชฉ๋ง ์ฒ๋ฆฌ
valid_items = [m for m in all_items['metadatas'] if 'image_url' in m]
for metadata in valid_items:
future = executor.submit(
download_and_process_image,
metadata['image_url'],
metadata.get('id', 'unknown')
)
futures.append((metadata, future))
# ๊ฒฐ๊ณผ ์ฒ๋ฆฌ ๋ฐ ์ DB์ ์ ์ฅ
for idx, (metadata, future) in enumerate(futures):
try:
new_features = future.result()
if new_features is not None:
item_id = metadata.get('id', str(hash(metadata['image_url'])))
try:
new_collection.add(
embeddings=[new_features.tolist()],
metadatas=[metadata],
ids=[item_id]
)
successful_updates += 1
logger.info(f"Successfully added item {item_id}")
except Exception as e:
logger.error(f"Error adding item to new collection: {str(e)}")
failed_updates += 1
else:
failed_updates += 1
# ์งํ ์ํฉ ์
๋ฐ์ดํธ
progress = (idx + 1) / len(futures)
progress_bar.progress(progress)
status_text.text(f"Processing: {idx + 1}/{len(futures)} items. Success: {successful_updates}, Failed: {failed_updates}")
except Exception as e:
logger.error(f"Error processing item: {str(e)}")
failed_updates += 1
continue
# ์ต์ข
๊ฒฐ๊ณผ ํ์
status_text.text(f"Update completed. Successfully processed: {successful_updates}, Failed: {failed_updates}")
logger.info(f"Database update completed. Successful: {successful_updates}, Failed: {failed_updates}")
# ์ฑ๊ณต์ ์ผ๋ก ์ฒ๋ฆฌ๋ ํญ๋ชฉ์ด ์๋์ง ํ์ธ
if successful_updates > 0:
return True
else:
logger.error("No items were successfully processed")
return False
except Exception as e:
logger.error(f"Database update error: {str(e)}")
import traceback
logger.error(traceback.format_exc())
return False
def extract_features(image, mask=None):
"""Extract CLIP features with segmentation mask"""
try:
if mask is not None:
img_array = np.array(image)
mask = np.expand_dims(mask, axis=2)
masked_img = img_array * mask
masked_img[mask[:,:,0] == 0] = 255 # ๋ฐฐ๊ฒฝ์ ํฐ์์ผ๋ก
image = Image.fromarray(masked_img.astype(np.uint8))
image_tensor = preprocess_val(image).unsqueeze(0).to(device)
with torch.no_grad():
features = clip_model.encode_image(image_tensor)
features /= features.norm(dim=-1, keepdim=True)
return features.cpu().numpy().flatten()
except Exception as e:
logger.error(f"Feature extraction error: {e}")
raise
def search_similar_items(features, top_k=10):
"""Search similar items using segmentation-based features"""
try:
# ์ธ๊ทธ๋ฉํ
์ด์
์ด ์ ์ฉ๋ collection์ด ์๋์ง ํ์ธ
try:
search_collection = client.get_collection("clothes_segmented")
logger.info("Using segmented collection for search")
except:
# ์์ผ๋ฉด ๊ธฐ์กด collection ์ฌ์ฉ
search_collection = collection
logger.info("Using original collection for search")
results = search_collection.query(
query_embeddings=[features.tolist()],
n_results=top_k,
include=['metadatas', 'distances']
)
if not results or not results['metadatas'] or not results['distances']:
logger.warning("No results returned from ChromaDB")
return []
similar_items = []
for metadata, distance in zip(results['metadatas'][0], results['distances'][0]):
try:
similarity_score = 1 / (1 + float(distance))
item_data = metadata.copy()
item_data['similarity_score'] = similarity_score
similar_items.append(item_data)
except Exception as e:
logger.error(f"Error processing search result: {str(e)}")
continue
similar_items.sort(key=lambda x: x['similarity_score'], reverse=True)
return similar_items
except Exception as e:
logger.error(f"Search error: {str(e)}")
return []
def show_similar_items(similar_items):
"""Display similar items in a structured format with similarity scores"""
if not similar_items:
st.warning("No similar items found.")
return
st.subheader("Similar Items:")
# ๊ฒฐ๊ณผ๋ฅผ 2์ด๋ก ํ์
items_per_row = 2
for i in range(0, len(similar_items), items_per_row):
cols = st.columns(items_per_row)
for j, col in enumerate(cols):
if i + j < len(similar_items):
item = similar_items[i + j]
with col:
try:
if 'image_url' in item:
st.image(item['image_url'], use_column_width=True)
# ์ ์ฌ๋ ์ ์๋ฅผ ํผ์ผํธ๋ก ํ์
similarity_percent = item['similarity_score'] * 100
st.markdown(f"**Similarity: {similarity_percent:.1f}%**")
st.write(f"Brand: {item.get('brand', 'Unknown')}")
name = item.get('name', 'Unknown')
if len(name) > 50: # ๊ธด ์ด๋ฆ์ ์ค์
name = name[:47] + "..."
st.write(f"Name: {name}")
# ๊ฐ๊ฒฉ ์ ๋ณด ํ์
price = item.get('price', 0)
if isinstance(price, (int, float)):
st.write(f"Price: {price:,}์")
else:
st.write(f"Price: {price}")
# ํ ์ธ ์ ๋ณด๊ฐ ์๋ ๊ฒฝ์ฐ
if 'discount' in item and item['discount']:
st.write(f"Discount: {item['discount']}%")
if 'original_price' in item:
st.write(f"Original: {item['original_price']:,}์")
st.divider() # ๊ตฌ๋ถ์ ์ถ๊ฐ
except Exception as e:
logger.error(f"Error displaying item: {e}")
st.error("Error displaying this item")
def process_search(image, mask, num_results):
"""์ ์ฌ ์์ดํ
๊ฒ์ ์ฒ๋ฆฌ"""
try:
with st.spinner("Extracting features..."):
features = extract_features(image, mask)
with st.spinner("Finding similar items..."):
similar_items = search_similar_items(features, top_k=num_results)
return similar_items
except Exception as e:
logger.error(f"Search processing error: {e}")
return None
# Callback functions
def handle_file_upload():
if st.session_state.uploaded_file is not None:
image = Image.open(st.session_state.uploaded_file).convert('RGB')
st.session_state.image = image
st.session_state.upload_state = 'image_uploaded'
st.rerun()
def handle_detection():
if st.session_state.image is not None:
detected_items = process_segmentation(st.session_state.image)
st.session_state.detected_items = detected_items
st.session_state.upload_state = 'items_detected'
st.rerun()
def handle_search():
st.session_state.search_clicked = True
def admin_interface():
st.title("Admin Interface - DB Update")
if st.button("Update DB with Segmentation"):
with st.spinner("Updating database with segmentation... This may take a while..."):
success = update_db_with_segmentation()
if success:
st.success("Database successfully updated with segmentation-based features!")
else:
st.error("Failed to update database. Please check the logs.")
def main():
st.title("Fashion Search App")
# Admin controls in sidebar
st.sidebar.title("Admin Controls")
if st.sidebar.checkbox("Show Admin Interface"):
admin_interface()
st.divider()
# ํ์ผ ์
๋ก๋ (upload_state๊ฐ initial์ผ ๋๋ง ํ์)
if st.session_state.upload_state == 'initial':
uploaded_file = st.file_uploader("Upload an image", type=['png', 'jpg', 'jpeg'],
key='uploaded_file', on_change=handle_file_upload)
# ์ด๋ฏธ์ง๊ฐ ์
๋ก๋๋ ์ํ
if st.session_state.image is not None:
st.image(st.session_state.image, caption="Uploaded Image", use_column_width=True)
if st.session_state.detected_items is None:
if st.button("Detect Items", key='detect_button', on_click=handle_detection):
pass
# ๊ฒ์ถ๋ ์์ดํ
ํ์
if st.session_state.detected_items:
# ๊ฐ์ง๋ ์์ดํ
๋ค์ 2์ด๋ก ํ์
cols = st.columns(2)
for idx, item in enumerate(st.session_state.detected_items):
with cols[idx % 2]:
mask = item['mask']
masked_img = np.array(st.session_state.image) * np.expand_dims(mask, axis=2)
st.image(masked_img.astype(np.uint8), caption=f"Detected {item['label']}")
st.write(f"Item {idx + 1}: {item['label']}")
st.write(f"Confidence: {item['score']*100:.1f}%")
# ์์ดํ
์ ํ
selected_idx = st.selectbox(
"Select item to search:",
range(len(st.session_state.detected_items)),
format_func=lambda i: f"{st.session_state.detected_items[i]['label']}",
key='item_selector'
)
# ๊ฒ์ ์ปจํธ๋กค
search_col1, search_col2 = st.columns([1, 2])
with search_col1:
search_clicked = st.button("Search Similar Items",
key='search_button',
type="primary")
with search_col2:
num_results = st.slider("Number of results:",
min_value=1,
max_value=20,
value=5,
key='num_results')
# ๊ฒ์ ๊ฒฐ๊ณผ ์ฒ๋ฆฌ
if search_clicked or st.session_state.get('search_clicked', False):
st.session_state.search_clicked = True
selected_mask = st.session_state.detected_items[selected_idx]['mask']
# ๊ฒ์ ๊ฒฐ๊ณผ๋ฅผ ์ธ์
์ํ์ ์ ์ฅ
if 'search_results' not in st.session_state:
similar_items = process_search(st.session_state.image, selected_mask, num_results)
st.session_state.search_results = similar_items
# ์ ์ฅ๋ ๊ฒ์ ๊ฒฐ๊ณผ ํ์
if st.session_state.search_results:
show_similar_items(st.session_state.search_results)
else:
st.warning("No similar items found.")
# ์ ๊ฒ์ ๋ฒํผ
if st.button("Start New Search", key='new_search'):
# ๋ชจ๋ ์ํ ์ด๊ธฐํ
for key in list(st.session_state.keys()):
del st.session_state[key]
st.rerun()
if __name__ == "__main__":
main() |