File size: 18,309 Bytes
2dba380
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
import streamlit as st
import open_clip
import torch
from PIL import Image
import numpy as np
from transformers import pipeline
import chromadb
import logging
import io
import requests
from concurrent.futures import ThreadPoolExecutor

# ๋กœ๊น… ์„ค์ •
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Initialize session state
if 'image' not in st.session_state:
    st.session_state.image = None
if 'detected_items' not in st.session_state:
    st.session_state.detected_items = None
if 'selected_item_index' not in st.session_state:
    st.session_state.selected_item_index = None
if 'upload_state' not in st.session_state:
    st.session_state.upload_state = 'initial'
if 'search_clicked' not in st.session_state:
    st.session_state.search_clicked = False

# Load models
@st.cache_resource
def load_models():
    try:
        # CLIP ๋ชจ๋ธ
        model, _, preprocess_val = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionSigLIP')
        
        # ์„ธ๊ทธ๋ฉ˜ํ…Œ์ด์…˜ ๋ชจ๋ธ
        segmenter = pipeline(model="mattmdjaga/segformer_b2_clothes")
        
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        model.to(device)
        
        return model, preprocess_val, segmenter, device
    except Exception as e:
        logger.error(f"Error loading models: {e}")
        raise

# ๋ชจ๋ธ ๋กœ๋“œ
clip_model, preprocess_val, segmenter, device = load_models()

# ChromaDB ์„ค์ •
client = chromadb.PersistentClient(path="./clothesDB_11GmarketMusinsa")
collection = client.get_collection(name="clothes")

def process_segmentation(image):
    """Segmentation processing"""
    try:
        # pipeline ์ถœ๋ ฅ ๊ฒฐ๊ณผ ์ง์ ‘ ์ฒ˜๋ฆฌ
        output = segmenter(image)
        
        if not output:
            logger.warning("No segments found in image")
            return None
            
        # ๊ฐ ์„ธ๊ทธ๋จผํŠธ์˜ ๋งˆ์Šคํฌ ํฌ๊ธฐ ๊ณ„์‚ฐ
        segment_sizes = [np.sum(seg['mask']) for seg in output]
        
        if not segment_sizes:
            return None
            
        # ๊ฐ€์žฅ ํฐ ์„ธ๊ทธ๋จผํŠธ ์„ ํƒ
        largest_idx = np.argmax(segment_sizes)
        mask = output[largest_idx]['mask']
        
        # ๋งˆ์Šคํฌ๊ฐ€ numpy array๊ฐ€ ์•„๋‹Œ ๊ฒฝ์šฐ ๋ณ€ํ™˜
        if not isinstance(mask, np.ndarray):
            mask = np.array(mask)
            
        # ๋งˆ์Šคํฌ๊ฐ€ 2D๊ฐ€ ์•„๋‹Œ ๊ฒฝ์šฐ ์ฒซ ๋ฒˆ์งธ ์ฑ„๋„ ์‚ฌ์šฉ
        if len(mask.shape) > 2:
            mask = mask[:, :, 0]
            
        # bool ๋งˆ์Šคํฌ๋ฅผ float๋กœ ๋ณ€ํ™˜
        mask = mask.astype(float)
        
        logger.info(f"Successfully created mask with shape {mask.shape}")
        return mask
        
    except Exception as e:
        logger.error(f"Segmentation error: {str(e)}")
        import traceback
        logger.error(traceback.format_exc())
        return None

def download_and_process_image(image_url, metadata_id):
    """Download image from URL and apply segmentation"""
    try:
        response = requests.get(image_url, timeout=10)  # timeout ์ถ”๊ฐ€
        if response.status_code != 200:
            logger.error(f"Failed to download image {metadata_id}: HTTP {response.status_code}")
            return None
            
        image = Image.open(io.BytesIO(response.content)).convert('RGB')
        logger.info(f"Successfully downloaded image {metadata_id}")
        
        mask = process_segmentation(image)
        if mask is not None:
            features = extract_features(image, mask)
            logger.info(f"Successfully extracted features for image {metadata_id}")
            return features
            
        logger.warning(f"No valid mask found for image {metadata_id}")
        return None
        
    except Exception as e:
        logger.error(f"Error processing image {metadata_id}: {str(e)}")
        import traceback
        logger.error(traceback.format_exc())
        return None

def update_db_with_segmentation():
    """DB์˜ ๋ชจ๋“  ์ด๋ฏธ์ง€์— ๋Œ€ํ•ด segmentation์„ ์ ์šฉํ•˜๊ณ  feature๋ฅผ ์—…๋ฐ์ดํŠธ"""
    try:
        logger.info("Starting database update with segmentation")
        
        # ์ƒˆ๋กœ์šด collection ์ƒ์„ฑ
        try:
            client.delete_collection("clothes_segmented")
            logger.info("Deleted existing segmented collection")
        except:
            logger.info("No existing segmented collection to delete")
            
        new_collection = client.create_collection(
            name="clothes_segmented",
            metadata={"description": "Clothes collection with segmentation-based features"}
        )
        logger.info("Created new segmented collection")
        
        # ๊ธฐ์กด collection์—์„œ ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ๋งŒ ๊ฐ€์ ธ์˜ค๊ธฐ
        try:
            all_items = collection.get(include=['metadatas'])
            total_items = len(all_items['metadatas'])
            logger.info(f"Found {total_items} items in database")
        except Exception as e:
            logger.error(f"Error getting items from collection: {str(e)}")
            # ์—๋Ÿฌ ๋ฐœ์ƒ ์‹œ ๋นˆ ๋ฆฌ์ŠคํŠธ๋กœ ์ดˆ๊ธฐํ™”
            all_items = {'metadatas': []}
            total_items = 0
            
        # ์ง„ํ–‰ ์ƒํ™ฉ ํ‘œ์‹œ๋ฅผ ์œ„ํ•œ progress bar
        progress_bar = st.progress(0)
        status_text = st.empty()
        
        successful_updates = 0
        failed_updates = 0
        
        with ThreadPoolExecutor(max_workers=4) as executor:
            futures = []
            # ์ด๋ฏธ์ง€ URL์ด ์žˆ๋Š” ํ•ญ๋ชฉ๋งŒ ์ฒ˜๋ฆฌ
            valid_items = [m for m in all_items['metadatas'] if 'image_url' in m]
            
            for metadata in valid_items:
                future = executor.submit(
                    download_and_process_image, 
                    metadata['image_url'],
                    metadata.get('id', 'unknown')
                )
                futures.append((metadata, future))
            
            # ๊ฒฐ๊ณผ ์ฒ˜๋ฆฌ ๋ฐ ์ƒˆ DB์— ์ €์žฅ
            for idx, (metadata, future) in enumerate(futures):
                try:
                    new_features = future.result()
                    if new_features is not None:
                        item_id = metadata.get('id', str(hash(metadata['image_url'])))
                        try:
                            new_collection.add(
                                embeddings=[new_features.tolist()],
                                metadatas=[metadata],
                                ids=[item_id]
                            )
                            successful_updates += 1
                            logger.info(f"Successfully added item {item_id}")
                        except Exception as e:
                            logger.error(f"Error adding item to new collection: {str(e)}")
                            failed_updates += 1
                    else:
                        failed_updates += 1
                        
                    # ์ง„ํ–‰ ์ƒํ™ฉ ์—…๋ฐ์ดํŠธ
                    progress = (idx + 1) / len(futures)
                    progress_bar.progress(progress)
                    status_text.text(f"Processing: {idx + 1}/{len(futures)} items. Success: {successful_updates}, Failed: {failed_updates}")
                    
                except Exception as e:
                    logger.error(f"Error processing item: {str(e)}")
                    failed_updates += 1
                    continue
        
        # ์ตœ์ข… ๊ฒฐ๊ณผ ํ‘œ์‹œ
        status_text.text(f"Update completed. Successfully processed: {successful_updates}, Failed: {failed_updates}")
        logger.info(f"Database update completed. Successful: {successful_updates}, Failed: {failed_updates}")
        
        # ์„ฑ๊ณต์ ์œผ๋กœ ์ฒ˜๋ฆฌ๋œ ํ•ญ๋ชฉ์ด ์žˆ๋Š”์ง€ ํ™•์ธ
        if successful_updates > 0:
            return True
        else:
            logger.error("No items were successfully processed")
            return False
        
    except Exception as e:
        logger.error(f"Database update error: {str(e)}")
        import traceback
        logger.error(traceback.format_exc())
        return False

def extract_features(image, mask=None):
    """Extract CLIP features with segmentation mask"""
    try:
        if mask is not None:
            img_array = np.array(image)
            mask = np.expand_dims(mask, axis=2)
            masked_img = img_array * mask
            masked_img[mask[:,:,0] == 0] = 255  # ๋ฐฐ๊ฒฝ์„ ํฐ์ƒ‰์œผ๋กœ
            image = Image.fromarray(masked_img.astype(np.uint8))
        
        image_tensor = preprocess_val(image).unsqueeze(0).to(device)
        with torch.no_grad():
            features = clip_model.encode_image(image_tensor)
            features /= features.norm(dim=-1, keepdim=True)
        return features.cpu().numpy().flatten()
    except Exception as e:
        logger.error(f"Feature extraction error: {e}")
        raise

def search_similar_items(features, top_k=10):
    """Search similar items using segmentation-based features"""
    try:
        # ์„ธ๊ทธ๋ฉ˜ํ…Œ์ด์…˜์ด ์ ์šฉ๋œ collection์ด ์žˆ๋Š”์ง€ ํ™•์ธ
        try:
            search_collection = client.get_collection("clothes_segmented")
            logger.info("Using segmented collection for search")
        except:
            # ์—†์œผ๋ฉด ๊ธฐ์กด collection ์‚ฌ์šฉ
            search_collection = collection
            logger.info("Using original collection for search")
        
        results = search_collection.query(
            query_embeddings=[features.tolist()],
            n_results=top_k,
            include=['metadatas', 'distances']
        )
        
        if not results or not results['metadatas'] or not results['distances']:
            logger.warning("No results returned from ChromaDB")
            return []

        similar_items = []
        for metadata, distance in zip(results['metadatas'][0], results['distances'][0]):
            try:
                similarity_score = 1 / (1 + float(distance))
                item_data = metadata.copy()
                item_data['similarity_score'] = similarity_score
                similar_items.append(item_data)
            except Exception as e:
                logger.error(f"Error processing search result: {str(e)}")
                continue
        
        similar_items.sort(key=lambda x: x['similarity_score'], reverse=True)
        return similar_items
    except Exception as e:
        logger.error(f"Search error: {str(e)}")
        return []

def show_similar_items(similar_items):
    """Display similar items in a structured format with similarity scores"""
    if not similar_items:
        st.warning("No similar items found.")
        return
        
    st.subheader("Similar Items:")
    
    # ๊ฒฐ๊ณผ๋ฅผ 2์—ด๋กœ ํ‘œ์‹œ
    items_per_row = 2
    for i in range(0, len(similar_items), items_per_row):
        cols = st.columns(items_per_row)
        for j, col in enumerate(cols):
            if i + j < len(similar_items):
                item = similar_items[i + j]
                with col:
                    try:
                        if 'image_url' in item:
                            st.image(item['image_url'], use_column_width=True)
                        
                        # ์œ ์‚ฌ๋„ ์ ์ˆ˜๋ฅผ ํผ์„ผํŠธ๋กœ ํ‘œ์‹œ
                        similarity_percent = item['similarity_score'] * 100
                        st.markdown(f"**Similarity: {similarity_percent:.1f}%**")
                        
                        st.write(f"Brand: {item.get('brand', 'Unknown')}")
                        name = item.get('name', 'Unknown')
                        if len(name) > 50:  # ๊ธด ์ด๋ฆ„์€ ์ค„์ž„
                            name = name[:47] + "..."
                        st.write(f"Name: {name}")
                        
                        # ๊ฐ€๊ฒฉ ์ •๋ณด ํ‘œ์‹œ
                        price = item.get('price', 0)
                        if isinstance(price, (int, float)):
                            st.write(f"Price: {price:,}์›")
                        else:
                            st.write(f"Price: {price}")
                        
                        # ํ• ์ธ ์ •๋ณด๊ฐ€ ์žˆ๋Š” ๊ฒฝ์šฐ
                        if 'discount' in item and item['discount']:
                            st.write(f"Discount: {item['discount']}%")
                            if 'original_price' in item:
                                st.write(f"Original: {item['original_price']:,}์›")
                        
                        st.divider()  # ๊ตฌ๋ถ„์„  ์ถ”๊ฐ€
                        
                    except Exception as e:
                        logger.error(f"Error displaying item: {e}")
                        st.error("Error displaying this item")

def process_search(image, mask, num_results):
    """์œ ์‚ฌ ์•„์ดํ…œ ๊ฒ€์ƒ‰ ์ฒ˜๋ฆฌ"""
    try:
        with st.spinner("Extracting features..."):
            features = extract_features(image, mask)
        
        with st.spinner("Finding similar items..."):
            similar_items = search_similar_items(features, top_k=num_results)
            
        return similar_items
    except Exception as e:
        logger.error(f"Search processing error: {e}")
        return None

# Callback functions
def handle_file_upload():
    if st.session_state.uploaded_file is not None:
        image = Image.open(st.session_state.uploaded_file).convert('RGB')
        st.session_state.image = image
        st.session_state.upload_state = 'image_uploaded'
        st.rerun()

def handle_detection():
    if st.session_state.image is not None:
        detected_items = process_segmentation(st.session_state.image)
        st.session_state.detected_items = detected_items
        st.session_state.upload_state = 'items_detected'
        st.rerun()

def handle_search():
    st.session_state.search_clicked = True

def admin_interface():
    st.title("Admin Interface - DB Update")
    if st.button("Update DB with Segmentation"):
        with st.spinner("Updating database with segmentation... This may take a while..."):
            success = update_db_with_segmentation()
            if success:
                st.success("Database successfully updated with segmentation-based features!")
            else:
                st.error("Failed to update database. Please check the logs.")

def main():
    st.title("Fashion Search App")

    # Admin controls in sidebar
    st.sidebar.title("Admin Controls")
    if st.sidebar.checkbox("Show Admin Interface"):
        admin_interface()
        st.divider()

    # ํŒŒ์ผ ์—…๋กœ๋” (upload_state๊ฐ€ initial์ผ ๋•Œ๋งŒ ํ‘œ์‹œ)
    if st.session_state.upload_state == 'initial':
        uploaded_file = st.file_uploader("Upload an image", type=['png', 'jpg', 'jpeg'], 
                                       key='uploaded_file', on_change=handle_file_upload)

    # ์ด๋ฏธ์ง€๊ฐ€ ์—…๋กœ๋“œ๋œ ์ƒํƒœ
    if st.session_state.image is not None:
        st.image(st.session_state.image, caption="Uploaded Image", use_column_width=True)
        
        if st.session_state.detected_items is None:
            if st.button("Detect Items", key='detect_button', on_click=handle_detection):
                pass
        
        # ๊ฒ€์ถœ๋œ ์•„์ดํ…œ ํ‘œ์‹œ
        if st.session_state.detected_items:
            # ๊ฐ์ง€๋œ ์•„์ดํ…œ๋“ค์„ 2์—ด๋กœ ํ‘œ์‹œ
            cols = st.columns(2)
            for idx, item in enumerate(st.session_state.detected_items):
                with cols[idx % 2]:
                    mask = item['mask']
                    masked_img = np.array(st.session_state.image) * np.expand_dims(mask, axis=2)
                    st.image(masked_img.astype(np.uint8), caption=f"Detected {item['label']}")
                    st.write(f"Item {idx + 1}: {item['label']}")
                    st.write(f"Confidence: {item['score']*100:.1f}%")
            
            # ์•„์ดํ…œ ์„ ํƒ
            selected_idx = st.selectbox(
                "Select item to search:",
                range(len(st.session_state.detected_items)),
                format_func=lambda i: f"{st.session_state.detected_items[i]['label']}",
                key='item_selector'
            )
            
            # ๊ฒ€์ƒ‰ ์ปจํŠธ๋กค
            search_col1, search_col2 = st.columns([1, 2])
            with search_col1:
                search_clicked = st.button("Search Similar Items", 
                                         key='search_button',
                                         type="primary")
            with search_col2:
                num_results = st.slider("Number of results:", 
                                      min_value=1, 
                                      max_value=20, 
                                      value=5,
                                      key='num_results')

            # ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ์ฒ˜๋ฆฌ
            if search_clicked or st.session_state.get('search_clicked', False):
                st.session_state.search_clicked = True
                selected_mask = st.session_state.detected_items[selected_idx]['mask']
                
                # ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ๋ฅผ ์„ธ์…˜ ์ƒํƒœ์— ์ €์žฅ
                if 'search_results' not in st.session_state:
                    similar_items = process_search(st.session_state.image, selected_mask, num_results)
                    st.session_state.search_results = similar_items
                
                # ์ €์žฅ๋œ ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ํ‘œ์‹œ
                if st.session_state.search_results:
                    show_similar_items(st.session_state.search_results)
                else:
                    st.warning("No similar items found.")

    # ์ƒˆ ๊ฒ€์ƒ‰ ๋ฒ„ํŠผ
    if st.button("Start New Search", key='new_search'):
        # ๋ชจ๋“  ์ƒํƒœ ์ดˆ๊ธฐํ™”
        for key in list(st.session_state.keys()):
            del st.session_state[key]
        st.rerun()

if __name__ == "__main__":
    main()