Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
@@ -1,7 +1,174 @@
|
|
1 |
-
from flask import Flask
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
app = Flask(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
return {"xao chin": "xin chao"}
|
|
|
1 |
+
from flask import Flask, request, jsonify
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
import os
|
4 |
+
import pymongo
|
5 |
+
import google.generativeai as genai
|
6 |
+
from flask_cors import CORS
|
7 |
+
from tqdm import tqdm
|
8 |
+
|
9 |
+
# Load environment variables from .env file
|
10 |
+
load_dotenv()
|
11 |
+
|
12 |
+
# Access the key
|
13 |
+
MONGODB_URI = os.getenv('MONGODB_URI')
|
14 |
+
EMBEDDING_MODEL = os.getenv('EMBEDDING_MODEL') or 'keepitreal/vietnamese-sbert'
|
15 |
+
DB_NAME = os.getenv('DB_NAME')
|
16 |
+
DB_COLLECTION = os.getenv('DB_COLLECTION')
|
17 |
+
GEMINI_KEY = os.getenv('GEMINI_KEY')
|
18 |
+
genai.configure(api_key=GEMINI_KEY)
|
19 |
+
model = genai.GenerativeModel('gemini-1.5-pro')
|
20 |
+
|
21 |
+
client = pymongo.MongoClient(MONGODB_URI)
|
22 |
+
db = client[DB_NAME]
|
23 |
+
collection = db[DB_COLLECTION]
|
24 |
|
25 |
app = Flask(__name__)
|
26 |
+
CORS(app)
|
27 |
+
|
28 |
+
from sentence_transformers import SentenceTransformer
|
29 |
+
embedding_model = SentenceTransformer(EMBEDDING_MODEL)
|
30 |
+
|
31 |
+
def vector_search(user_query, collection, limit=4):
|
32 |
+
"""
|
33 |
+
Perform a vector search in the MongoDB collection based on the user query.
|
34 |
+
|
35 |
+
Args:
|
36 |
+
user_query (str): The user's query string.
|
37 |
+
collection (MongoCollection): The MongoDB collection to search.
|
38 |
+
|
39 |
+
Returns:
|
40 |
+
list: A list of matching documents.
|
41 |
+
"""
|
42 |
+
|
43 |
+
# Generate embedding for the user query
|
44 |
+
query_embedding = get_embedding(user_query)
|
45 |
+
|
46 |
+
if query_embedding is None:
|
47 |
+
return "Invalid query or embedding generation failed."
|
48 |
+
|
49 |
+
# Define the vector search pipeline
|
50 |
+
vector_search_stage = {
|
51 |
+
"$vectorSearch": {
|
52 |
+
"index": "vector_index",
|
53 |
+
"queryVector": query_embedding,
|
54 |
+
"path": "embedding",
|
55 |
+
"numCandidates": 150,
|
56 |
+
"limit": limit,
|
57 |
+
}
|
58 |
+
}
|
59 |
+
|
60 |
+
unset_stage = {
|
61 |
+
"$unset": "embedding"
|
62 |
+
}
|
63 |
+
|
64 |
+
project_stage = {
|
65 |
+
"$project": {
|
66 |
+
"_id": 0,
|
67 |
+
"title": 1,
|
68 |
+
"details": 1,
|
69 |
+
"price": 1,
|
70 |
+
"promotion_price": 1,
|
71 |
+
"size_options": 1,
|
72 |
+
"gender_options": 1,
|
73 |
+
"quantity": 1,
|
74 |
+
"stock": 1,
|
75 |
+
"is_shoes": 1,
|
76 |
+
"is_sandals": 1,
|
77 |
+
}
|
78 |
+
}
|
79 |
+
|
80 |
+
pipeline = [vector_search_stage, unset_stage, project_stage]
|
81 |
+
|
82 |
+
# Execute the search
|
83 |
+
results = collection.aggregate(pipeline)
|
84 |
+
|
85 |
+
return list(results)
|
86 |
+
|
87 |
+
def get_search_result(query, collection):
|
88 |
+
get_knowledge = vector_search(query, collection, 10)
|
89 |
+
search_result = ""
|
90 |
+
i = 0
|
91 |
+
for result in get_knowledge:
|
92 |
+
# print(result)
|
93 |
+
i += 1
|
94 |
+
if result.get('price'):
|
95 |
+
search_result += f"\n\nSản phẩm {i+1}: {result.get('title')}, Giá: {result.get('price')}"
|
96 |
+
|
97 |
+
if result.get('promotion_price'):
|
98 |
+
search_result += f", Giá ưu đãi: {result.get('promotion_price')}"
|
99 |
+
|
100 |
+
if result.get('stock'):
|
101 |
+
search_result += f", Trạng thái: {result.get('stock')}"
|
102 |
+
|
103 |
+
if result.get('is_shoes') == True:
|
104 |
+
search_result += f", Loại: Giày"
|
105 |
+
|
106 |
+
if result.get('is_sandals') == True:
|
107 |
+
search_result += f", Loại: Dép"
|
108 |
+
|
109 |
+
if result.get('size_options'):
|
110 |
+
search_result += f", Size: {result.get('size_options')}"
|
111 |
+
|
112 |
+
if result.get('gender_options'):
|
113 |
+
search_result += f", Dành cho: {result.get('gender_options')}"
|
114 |
+
|
115 |
+
if result.get('details'):
|
116 |
+
search_result += f", Chi tiết sản phẩm: {result.get('details')}"
|
117 |
+
|
118 |
+
return search_result
|
119 |
+
|
120 |
+
def get_embedding(text):
|
121 |
+
if not text.strip():
|
122 |
+
print("Attempted to get embedding for empty text.")
|
123 |
+
return []
|
124 |
+
|
125 |
+
embedding = embedding_model.encode(text)
|
126 |
+
return embedding.tolist()
|
127 |
+
|
128 |
+
|
129 |
+
def process_query(query):
|
130 |
+
return query.lower()
|
131 |
+
|
132 |
+
@app.route('/api/search', methods=['POST'])
|
133 |
+
def handle_query():
|
134 |
+
data = request.get_json()
|
135 |
+
query = process_query(data.get('question'))
|
136 |
+
|
137 |
+
if not query:
|
138 |
+
return jsonify({'error': 'No query provided'}), 400
|
139 |
+
|
140 |
+
# Retrieve data from vector database
|
141 |
+
|
142 |
+
source_information = get_search_result(query, collection).replace('<br>', '\n')
|
143 |
+
combined_information = f"Hãy trở thành chuyên gia tư vấn bán hàng cho một website bán giày dép ThuThaoShoes. Câu hỏi của khách hàng: {query}\nTrả lời câu hỏi dựa vào các thông tin sản phẩm dưới đây: {source_information}."
|
144 |
+
|
145 |
+
response = model.generate_content(combined_information)
|
146 |
+
|
147 |
+
return jsonify({
|
148 |
+
'content': response.text
|
149 |
+
})
|
150 |
+
|
151 |
+
|
152 |
+
@app.route('/api/embedding', methods=['GET'])
|
153 |
+
def get_embedding_api():
|
154 |
+
|
155 |
+
# Lấy tất cả các tài liệu từ collection
|
156 |
+
documents = list(collection.find({}))
|
157 |
+
|
158 |
+
for doc in tqdm(documents, desc="Processing documents"):
|
159 |
+
product_specs = doc.get('title', '')
|
160 |
+
product_cat = doc.get('category', '')
|
161 |
+
print(product_specs + ' ' + product_cat)
|
162 |
+
embedding = get_embedding(product_specs + ' Danh mục: ' + product_cat)
|
163 |
+
|
164 |
+
if embedding is not None:
|
165 |
+
# Cập nhật tài liệu với embedding mới
|
166 |
+
collection.update_one(
|
167 |
+
{'_id': doc['_id']},
|
168 |
+
{'$set': {'embedding': embedding}}
|
169 |
+
)
|
170 |
+
|
171 |
+
return jsonify({'message': 'Embedding cập nhật thành công cho tất cả các tài liệu.'})
|
172 |
|
173 |
+
if __name__ == '__main__':
|
174 |
+
app.run(debug=True)
|
|