File size: 11,972 Bytes
fbf7415
 
 
 
 
 
 
 
 
 
 
a388382
fbe3aa1
a388382
fbf7415
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0b7d84
fbf7415
 
cdc8365
fbf7415
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86c9440
 
 
 
fbf7415
 
 
 
 
 
 
 
1e8b45b
 
 
fbf7415
 
 
 
 
 
 
 
86c9440
 
 
 
c1e3a9e
 
86c9440
 
 
 
fbf7415
4cc4f56
 
 
 
fbf7415
 
 
 
 
 
 
1a88db7
fbf7415
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86c9440
fbf7415
0e3c9bf
fbf7415
 
 
 
 
 
 
 
 
 
0e3c9bf
fbf7415
86c9440
 
fbf7415
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e8b45b
fbf7415
 
 
 
 
 
 
 
 
 
 
1a88db7
86c9440
 
fbf7415
86c9440
d80271d
86c9440
 
fbf7415
 
 
 
 
 
 
 
 
 
86c9440
 
 
 
0b9f1b0
278c6ac
86c9440
 
 
278c6ac
 
1e8b45b
fbf7415
 
 
86c9440
 
fbf7415
9c7e27e
fbf7415
 
 
 
1e8b45b
fbf7415
cdc8365
 
 
 
 
 
 
 
 
278c6ac
fbf7415
1e8b45b
fbf7415
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86c9440
 
fbf7415
 
 
 
 
 
 
 
 
6f556a0
86c9440
fbf7415
86c9440
 
d9624e5
fbf7415
cdc8365
 
 
 
86c9440
cdc8365
fbf7415
86c9440
fbf7415
 
 
 
 
 
 
 
278c6ac
1e8b45b
278c6ac
fbf7415
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
import functools
import os
import shutil
import sys
import git

import gradio as gr
import numpy as np
import torch as torch
from PIL import Image

print(torch.version.cuda)
os.system('locate libcusolver.so.11')

from gradio_imageslider import ImageSlider
from bilateral_normal_integration.bilateral_normal_integration_cupy import bilateral_normal_integration_function

import spaces

import fire

import argparse
import os
import logging

import numpy as np
import torch
from PIL import Image
from tqdm.auto import tqdm
import glob
import json
import cv2

from rembg import remove
from segment_anything import sam_model_registry, SamPredictor
from datetime import datetime
import time
import trimesh

import sys
sys.path.append("../")
from models.geowizard_pipeline import DepthNormalEstimationPipeline
from utils.seed_all import seed_all
import matplotlib.pyplot as plt
from utils.de_normalized import align_scale_shift
from utils.depth2normal import *

from diffusers import DiffusionPipeline, DDIMScheduler, AutoencoderKL
from models.unet_2d_condition import UNet2DConditionModel

from transformers import CLIPTextModel, CLIPTokenizer
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
import torchvision.transforms.functional as TF
from torchvision.transforms import InterpolationMode

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")  

vae = AutoencoderKL.from_pretrained("./", subfolder='vae')
scheduler = DDIMScheduler.from_pretrained("./", subfolder='scheduler')
image_encoder = CLIPVisionModelWithProjection.from_pretrained("./", subfolder="image_encoder")
feature_extractor = CLIPImageProcessor.from_pretrained("./", subfolder="feature_extractor")
unet = UNet2DConditionModel.from_pretrained('.', subfolder="unet")

pipe = DepthNormalEstimationPipeline(vae=vae,
                            image_encoder=image_encoder,
                            feature_extractor=feature_extractor,
                            unet=unet,
                            scheduler=scheduler)


outputs_dir = "./outs"

try:
    import xformers
    pipe.enable_xformers_memory_efficient_attention()
except:
    pass  # run without xformers

pipe = pipe.to(device)


def scale_img(img):
    width, height = img.size

    if min(width, height) > 512:
        scale = 512 / min(width, height)
        img = img.resize((int(width*scale), int(scale*height)), Image.LANCZOS)
    
    return img

def sam_init():
    #sam_checkpoint = os.path.join(os.path.dirname(__file__), "sam_pt", "sam_vit_l_0b3195.pth")
    #model_type = "vit_l"
    sam_checkpoint = os.path.join(os.path.dirname(__file__), "sam_pt", "sam_vit_h_4b8939.pth")
    model_type = "vit_h"

    sam = sam_model_registry[model_type](checkpoint=sam_checkpoint).to(device=f"cuda")
    predictor = SamPredictor(sam)
    return predictor

sam_predictor = sam_init()

@spaces.GPU
def sam_segment(predictor, input_image, *bbox_coords):
    bbox = np.array(bbox_coords)
    image = np.asarray(input_image)

    start_time = time.time()
    predictor.set_image(image)

    masks_bbox, scores_bbox, logits_bbox = predictor.predict(
        box=bbox,
        multimask_output=True
    )

    print(f"SAM Time: {time.time() - start_time:.3f}s")
    out_image = np.zeros((image.shape[0], image.shape[1], 4), dtype=np.uint8)
    out_image[:, :, :3] = image
    out_image_bbox = out_image.copy()
    out_image_bbox[:, :, 3] = masks_bbox[-1].astype(np.uint8) * 255
    torch.cuda.empty_cache()
    return Image.fromarray(out_image_bbox, mode='RGBA'), masks_bbox


@spaces.GPU
def depth_normal(img_path,
                denoising_steps,
                ensemble_size,
                processing_res,
                seed,
                domain):

    seed = int(seed)
    if seed >= 0:
        torch.manual_seed(seed)

    img = Image.open(img_path)

    img = scale_img(img)

    pipe_out = pipe(
        img,
        denoising_steps=denoising_steps,
        ensemble_size=ensemble_size,
        processing_res=processing_res,
        batch_size=0,
        domain=domain,
        show_progress_bar=True,
    )

    depth_colored = pipe_out.depth_colored
    normal_colored = pipe_out.normal_colored

    depth_np = pipe_out.depth_np
    normal_np = pipe_out.normal_np

    path_output_dir = os.path.splitext(os.path.basename(img_path))[0] + datetime.now().strftime('%Y%m%d-%H%M%S')
    path_output_dir = os.path.join(path_output_dir, outputs_dir)
    os.makedirs(path_output_dir, exist_ok=True)

    name_base = os.path.splitext(os.path.basename(img_path))[0]
    depth_path = os.path.join(path_output_dir, f"{name_base}_depth.npy")
    normal_path = os.path.join(path_output_dir, f"{name_base}_normal.npy")

    np.save(normal_path, normal_np)
    np.save(depth_path, depth_np)

    return depth_colored, normal_colored, [depth_path, normal_path]

@spaces.GPU
def seg_foreground(image_file):
    img = Image.open(image_file)

    img = scale_img(img)

    image_rem = img.convert('RGBA') #
    print("after resize ", image_rem.size)
    image_nobg = remove(image_rem, alpha_matting=True)
    arr = np.asarray(image_nobg)[:,:,-1]
    x_nonzero = np.nonzero(arr.sum(axis=0))
    y_nonzero = np.nonzero(arr.sum(axis=1))
    x_min = int(x_nonzero[0].min())
    y_min = int(y_nonzero[0].min())
    x_max = int(x_nonzero[0].max())
    y_max = int(y_nonzero[0].max())
    masked_image, mask = sam_segment(sam_predictor, img.convert('RGB'), x_min, y_min, x_max, y_max)

    mask = Image.fromarray(np.array(mask[-1]).astype(np.uint8) * 255)

    return masked_image, mask

@spaces.GPU(duration=120)
def reconstruction(image_file, files):

    torch.cuda.empty_cache()   

    masked_image, mask = seg_foreground(image_file)

    mask = np.array(mask) > 0.5
    depth_np = np.load(files[0])
    normal_np = np.load(files[1])

    h, w, _ = np.shape(normal_np)

    dir_name = os.path.dirname(os.path.realpath(files[0]))
    mask_output_temp = mask
    name_base = os.path.splitext(os.path.basename(files[0]))[0][:-6]

    normal_np[:, :, 0] *= -1
    _, surface, _,  _, _ = bilateral_normal_integration_function(normal_np, mask_output_temp, k=2, K=None, max_iter=100, tol=1e-4, cg_max_iter=5000, cg_tol=1e-3)
    ply_path = os.path.join(outputs_dir, dir_name, f"{name_base}_recon.ply")
    surface.save(ply_path, binary=False)

    obj_path = ply_path.replace('ply', 'obj')
    mesh = trimesh.load(ply_path)
    T2 = np.array([[0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]])
    mesh.apply_transform(T2)
    mesh.export(obj_path)

    torch.cuda.empty_cache()
    
    return obj_path, [ply_path], masked_image

# @spaces.GPU
def run_demo():


    custom_theme = gr.themes.Soft(primary_hue="blue").set(
                    button_secondary_background_fill="*neutral_100",
                    button_secondary_background_fill_hover="*neutral_200")
    custom_css = '''#disp_image {
        text-align: center; /* Horizontally center the content */
    }'''

    _TITLE = '''GeoWizard: Unleashing the Diffusion Priors for 3D Geometry Estimation from a Single Image'''
    _DESCRIPTION = '''
    <div>
    Generate consistent depth and normal from single image. High quality and rich details. (PS: We find the demo running on ZeroGPU output slightly inferior results compared to A100 or 3060 with everything exactly the same.)
    <a style="display:inline-block; margin-left: .5em" href='https://github.com/fuxiao0719/GeoWizard/'><img src='https://img.shields.io/github/stars/fuxiao0719/GeoWizard?style=social' /></a>
    </div>
    '''
    _GPU_ID = 0

    with gr.Blocks(title=_TITLE, theme=custom_theme, css=custom_css) as demo:
        with gr.Row():
            with gr.Column(scale=1):
                gr.Markdown('# ' + _TITLE)
        gr.Markdown(_DESCRIPTION)
        with gr.Row(variant='panel'):
            with gr.Column(scale=1):
                input_image = gr.Image(type='filepath', height=320, label='Input image')

                example_folder = os.path.join(os.path.dirname(__file__), "./files")
                example_fns = [os.path.join(example_folder, example) for example in os.listdir(example_folder)]
                gr.Examples(
                    examples=example_fns,
                    inputs=[input_image],
                    cache_examples=False,
                    label='Examples (click one of the images below to start)',
                    examples_per_page=30
                )
            with gr.Column(scale=1):

                with gr.Accordion('Advanced options', open=True):
                    with gr.Column():
                        
                        domain = gr.Radio(
                         [
                             ("Outdoor", "outdoor"),
                             ("Indoor", "indoor"),
                             ("Object", "object"),
                         ],
                         label="Data Type (Must Select One matches your image)",
                         value="indoor",
                     )
                        denoising_steps = gr.Slider(
                         label="Number of denoising steps (More steps, better quality)",
                         minimum=1,
                         maximum=50,
                         step=1,
                         value=10,
                     )
                        ensemble_size = gr.Slider(
                         label="Ensemble size (More steps, higher accuracy)",
                         minimum=1,
                         maximum=15,
                         step=1,
                         value=3,
                     )
                        seed = gr.Number(0, label='Random Seed. Negative values for not specifying')
                        
                        processing_res = gr.Radio(
                         [
                             ("Native", 0),
                             ("Recommended", 768),
                         ],
                         label="Processing resolution",
                         value=768,
                     )
                    

                run_btn = gr.Button('Generate', variant='primary', interactive=True)
        with gr.Row():
            with gr.Column():
                depth = gr.Image(interactive=False, show_label=False)
            with gr.Column():
                normal = gr.Image(interactive=False, show_label=False)
            with gr.Column():
                masked_image = gr.Image(interactive=False, label="Masked foreground.")

        with gr.Row():
            files = gr.Files(
                label = "Depth and Normal (numpy)",
                elem_id = "download",
                interactive=False,
            )

        with gr.Row():
            recon_btn = gr.Button('(Beta) Is there a salient foreground object? If yes, Click here to Reconstruct its 3D model.', variant='primary', interactive=True)
                
        with gr.Row():
            reconstructed_3d = gr.Model3D(
                    label = 'Bini post-processed 3D model', interactive=False
                )

        with gr.Row():
            reconstructed_file = gr.Files(
                label = "3D Mesh (plyfile)",
                elem_id = "download",
                interactive=False
            )

        mask = gr.Image(interactive=False, label="Masked foreground.", visible=False)
        run_btn.click(fn=depth_normal, 
                        inputs=[input_image, denoising_steps,
                                ensemble_size,
                                processing_res,
                                seed,
                                domain],
                        outputs=[depth, normal, files]
                        )
        recon_btn.click(fn=reconstruction,
                        inputs=[input_image, files],
                        outputs=[reconstructed_3d, reconstructed_file, masked_image]
                        )
        demo.queue().launch(share=True, max_threads=80)


if __name__ == '__main__':
    fire.Fire(run_demo)