Spaces:
Build error
Build error
File size: 11,972 Bytes
fbf7415 a388382 fbe3aa1 a388382 fbf7415 a0b7d84 fbf7415 cdc8365 fbf7415 86c9440 fbf7415 1e8b45b fbf7415 86c9440 c1e3a9e 86c9440 fbf7415 4cc4f56 fbf7415 1a88db7 fbf7415 86c9440 fbf7415 0e3c9bf fbf7415 0e3c9bf fbf7415 86c9440 fbf7415 1e8b45b fbf7415 1a88db7 86c9440 fbf7415 86c9440 d80271d 86c9440 fbf7415 86c9440 0b9f1b0 278c6ac 86c9440 278c6ac 1e8b45b fbf7415 86c9440 fbf7415 9c7e27e fbf7415 1e8b45b fbf7415 cdc8365 278c6ac fbf7415 1e8b45b fbf7415 86c9440 fbf7415 6f556a0 86c9440 fbf7415 86c9440 d9624e5 fbf7415 cdc8365 86c9440 cdc8365 fbf7415 86c9440 fbf7415 278c6ac 1e8b45b 278c6ac fbf7415 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
import functools
import os
import shutil
import sys
import git
import gradio as gr
import numpy as np
import torch as torch
from PIL import Image
print(torch.version.cuda)
os.system('locate libcusolver.so.11')
from gradio_imageslider import ImageSlider
from bilateral_normal_integration.bilateral_normal_integration_cupy import bilateral_normal_integration_function
import spaces
import fire
import argparse
import os
import logging
import numpy as np
import torch
from PIL import Image
from tqdm.auto import tqdm
import glob
import json
import cv2
from rembg import remove
from segment_anything import sam_model_registry, SamPredictor
from datetime import datetime
import time
import trimesh
import sys
sys.path.append("../")
from models.geowizard_pipeline import DepthNormalEstimationPipeline
from utils.seed_all import seed_all
import matplotlib.pyplot as plt
from utils.de_normalized import align_scale_shift
from utils.depth2normal import *
from diffusers import DiffusionPipeline, DDIMScheduler, AutoencoderKL
from models.unet_2d_condition import UNet2DConditionModel
from transformers import CLIPTextModel, CLIPTokenizer
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
import torchvision.transforms.functional as TF
from torchvision.transforms import InterpolationMode
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
vae = AutoencoderKL.from_pretrained("./", subfolder='vae')
scheduler = DDIMScheduler.from_pretrained("./", subfolder='scheduler')
image_encoder = CLIPVisionModelWithProjection.from_pretrained("./", subfolder="image_encoder")
feature_extractor = CLIPImageProcessor.from_pretrained("./", subfolder="feature_extractor")
unet = UNet2DConditionModel.from_pretrained('.', subfolder="unet")
pipe = DepthNormalEstimationPipeline(vae=vae,
image_encoder=image_encoder,
feature_extractor=feature_extractor,
unet=unet,
scheduler=scheduler)
outputs_dir = "./outs"
try:
import xformers
pipe.enable_xformers_memory_efficient_attention()
except:
pass # run without xformers
pipe = pipe.to(device)
def scale_img(img):
width, height = img.size
if min(width, height) > 512:
scale = 512 / min(width, height)
img = img.resize((int(width*scale), int(scale*height)), Image.LANCZOS)
return img
def sam_init():
#sam_checkpoint = os.path.join(os.path.dirname(__file__), "sam_pt", "sam_vit_l_0b3195.pth")
#model_type = "vit_l"
sam_checkpoint = os.path.join(os.path.dirname(__file__), "sam_pt", "sam_vit_h_4b8939.pth")
model_type = "vit_h"
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint).to(device=f"cuda")
predictor = SamPredictor(sam)
return predictor
sam_predictor = sam_init()
@spaces.GPU
def sam_segment(predictor, input_image, *bbox_coords):
bbox = np.array(bbox_coords)
image = np.asarray(input_image)
start_time = time.time()
predictor.set_image(image)
masks_bbox, scores_bbox, logits_bbox = predictor.predict(
box=bbox,
multimask_output=True
)
print(f"SAM Time: {time.time() - start_time:.3f}s")
out_image = np.zeros((image.shape[0], image.shape[1], 4), dtype=np.uint8)
out_image[:, :, :3] = image
out_image_bbox = out_image.copy()
out_image_bbox[:, :, 3] = masks_bbox[-1].astype(np.uint8) * 255
torch.cuda.empty_cache()
return Image.fromarray(out_image_bbox, mode='RGBA'), masks_bbox
@spaces.GPU
def depth_normal(img_path,
denoising_steps,
ensemble_size,
processing_res,
seed,
domain):
seed = int(seed)
if seed >= 0:
torch.manual_seed(seed)
img = Image.open(img_path)
img = scale_img(img)
pipe_out = pipe(
img,
denoising_steps=denoising_steps,
ensemble_size=ensemble_size,
processing_res=processing_res,
batch_size=0,
domain=domain,
show_progress_bar=True,
)
depth_colored = pipe_out.depth_colored
normal_colored = pipe_out.normal_colored
depth_np = pipe_out.depth_np
normal_np = pipe_out.normal_np
path_output_dir = os.path.splitext(os.path.basename(img_path))[0] + datetime.now().strftime('%Y%m%d-%H%M%S')
path_output_dir = os.path.join(path_output_dir, outputs_dir)
os.makedirs(path_output_dir, exist_ok=True)
name_base = os.path.splitext(os.path.basename(img_path))[0]
depth_path = os.path.join(path_output_dir, f"{name_base}_depth.npy")
normal_path = os.path.join(path_output_dir, f"{name_base}_normal.npy")
np.save(normal_path, normal_np)
np.save(depth_path, depth_np)
return depth_colored, normal_colored, [depth_path, normal_path]
@spaces.GPU
def seg_foreground(image_file):
img = Image.open(image_file)
img = scale_img(img)
image_rem = img.convert('RGBA') #
print("after resize ", image_rem.size)
image_nobg = remove(image_rem, alpha_matting=True)
arr = np.asarray(image_nobg)[:,:,-1]
x_nonzero = np.nonzero(arr.sum(axis=0))
y_nonzero = np.nonzero(arr.sum(axis=1))
x_min = int(x_nonzero[0].min())
y_min = int(y_nonzero[0].min())
x_max = int(x_nonzero[0].max())
y_max = int(y_nonzero[0].max())
masked_image, mask = sam_segment(sam_predictor, img.convert('RGB'), x_min, y_min, x_max, y_max)
mask = Image.fromarray(np.array(mask[-1]).astype(np.uint8) * 255)
return masked_image, mask
@spaces.GPU(duration=120)
def reconstruction(image_file, files):
torch.cuda.empty_cache()
masked_image, mask = seg_foreground(image_file)
mask = np.array(mask) > 0.5
depth_np = np.load(files[0])
normal_np = np.load(files[1])
h, w, _ = np.shape(normal_np)
dir_name = os.path.dirname(os.path.realpath(files[0]))
mask_output_temp = mask
name_base = os.path.splitext(os.path.basename(files[0]))[0][:-6]
normal_np[:, :, 0] *= -1
_, surface, _, _, _ = bilateral_normal_integration_function(normal_np, mask_output_temp, k=2, K=None, max_iter=100, tol=1e-4, cg_max_iter=5000, cg_tol=1e-3)
ply_path = os.path.join(outputs_dir, dir_name, f"{name_base}_recon.ply")
surface.save(ply_path, binary=False)
obj_path = ply_path.replace('ply', 'obj')
mesh = trimesh.load(ply_path)
T2 = np.array([[0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]])
mesh.apply_transform(T2)
mesh.export(obj_path)
torch.cuda.empty_cache()
return obj_path, [ply_path], masked_image
# @spaces.GPU
def run_demo():
custom_theme = gr.themes.Soft(primary_hue="blue").set(
button_secondary_background_fill="*neutral_100",
button_secondary_background_fill_hover="*neutral_200")
custom_css = '''#disp_image {
text-align: center; /* Horizontally center the content */
}'''
_TITLE = '''GeoWizard: Unleashing the Diffusion Priors for 3D Geometry Estimation from a Single Image'''
_DESCRIPTION = '''
<div>
Generate consistent depth and normal from single image. High quality and rich details. (PS: We find the demo running on ZeroGPU output slightly inferior results compared to A100 or 3060 with everything exactly the same.)
<a style="display:inline-block; margin-left: .5em" href='https://github.com/fuxiao0719/GeoWizard/'><img src='https://img.shields.io/github/stars/fuxiao0719/GeoWizard?style=social' /></a>
</div>
'''
_GPU_ID = 0
with gr.Blocks(title=_TITLE, theme=custom_theme, css=custom_css) as demo:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown('# ' + _TITLE)
gr.Markdown(_DESCRIPTION)
with gr.Row(variant='panel'):
with gr.Column(scale=1):
input_image = gr.Image(type='filepath', height=320, label='Input image')
example_folder = os.path.join(os.path.dirname(__file__), "./files")
example_fns = [os.path.join(example_folder, example) for example in os.listdir(example_folder)]
gr.Examples(
examples=example_fns,
inputs=[input_image],
cache_examples=False,
label='Examples (click one of the images below to start)',
examples_per_page=30
)
with gr.Column(scale=1):
with gr.Accordion('Advanced options', open=True):
with gr.Column():
domain = gr.Radio(
[
("Outdoor", "outdoor"),
("Indoor", "indoor"),
("Object", "object"),
],
label="Data Type (Must Select One matches your image)",
value="indoor",
)
denoising_steps = gr.Slider(
label="Number of denoising steps (More steps, better quality)",
minimum=1,
maximum=50,
step=1,
value=10,
)
ensemble_size = gr.Slider(
label="Ensemble size (More steps, higher accuracy)",
minimum=1,
maximum=15,
step=1,
value=3,
)
seed = gr.Number(0, label='Random Seed. Negative values for not specifying')
processing_res = gr.Radio(
[
("Native", 0),
("Recommended", 768),
],
label="Processing resolution",
value=768,
)
run_btn = gr.Button('Generate', variant='primary', interactive=True)
with gr.Row():
with gr.Column():
depth = gr.Image(interactive=False, show_label=False)
with gr.Column():
normal = gr.Image(interactive=False, show_label=False)
with gr.Column():
masked_image = gr.Image(interactive=False, label="Masked foreground.")
with gr.Row():
files = gr.Files(
label = "Depth and Normal (numpy)",
elem_id = "download",
interactive=False,
)
with gr.Row():
recon_btn = gr.Button('(Beta) Is there a salient foreground object? If yes, Click here to Reconstruct its 3D model.', variant='primary', interactive=True)
with gr.Row():
reconstructed_3d = gr.Model3D(
label = 'Bini post-processed 3D model', interactive=False
)
with gr.Row():
reconstructed_file = gr.Files(
label = "3D Mesh (plyfile)",
elem_id = "download",
interactive=False
)
mask = gr.Image(interactive=False, label="Masked foreground.", visible=False)
run_btn.click(fn=depth_normal,
inputs=[input_image, denoising_steps,
ensemble_size,
processing_res,
seed,
domain],
outputs=[depth, normal, files]
)
recon_btn.click(fn=reconstruction,
inputs=[input_image, files],
outputs=[reconstructed_3d, reconstructed_file, masked_image]
)
demo.queue().launch(share=True, max_threads=80)
if __name__ == '__main__':
fire.Fire(run_demo)
|