Spaces:
Running
Running
import copy | |
import os | |
from pathlib import Path | |
from typing import Union, Any | |
from grobid_client.grobid_client import GrobidClient | |
from langchain.chains import create_extraction_chain | |
from langchain.chains.question_answering import load_qa_chain | |
from langchain.prompts import SystemMessagePromptTemplate, HumanMessagePromptTemplate, ChatPromptTemplate | |
from langchain.retrievers import MultiQueryRetriever | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.vectorstores import Chroma | |
from tqdm import tqdm | |
from document_qa.grobid_processors import GrobidProcessor | |
class DocumentQAEngine: | |
llm = None | |
qa_chain_type = None | |
embedding_function = None | |
embeddings_dict = {} | |
embeddings_map_from_md5 = {} | |
embeddings_map_to_md5 = {} | |
def __init__(self, | |
llm, | |
embedding_function, | |
qa_chain_type="stuff", | |
embeddings_root_path=None, | |
grobid_url=None, | |
): | |
self.embedding_function = embedding_function | |
self.llm = llm | |
self.chain = load_qa_chain(llm, chain_type=qa_chain_type) | |
if embeddings_root_path is not None: | |
self.embeddings_root_path = embeddings_root_path | |
if not os.path.exists(embeddings_root_path): | |
os.makedirs(embeddings_root_path) | |
else: | |
self.load_embeddings(self.embeddings_root_path) | |
if grobid_url: | |
self.grobid_url = grobid_url | |
grobid_client = GrobidClient( | |
grobid_server=self.grobid_url, | |
batch_size=1000, | |
coordinates=["p"], | |
sleep_time=5, | |
timeout=60, | |
check_server=True | |
) | |
self.grobid_processor = GrobidProcessor(grobid_client) | |
def load_embeddings(self, embeddings_root_path: Union[str, Path]) -> None: | |
""" | |
Load the embeddings assuming they are all persisted and stored in a single directory. | |
The root path of the embeddings containing one data store for each document in each subdirectory | |
""" | |
embeddings_directories = [f for f in os.scandir(embeddings_root_path) if f.is_dir()] | |
if len(embeddings_directories) == 0: | |
print("No available embeddings") | |
return | |
for embedding_document_dir in embeddings_directories: | |
self.embeddings_dict[embedding_document_dir.name] = Chroma(persist_directory=embedding_document_dir.path, | |
embedding_function=self.embedding_function) | |
filename_list = list(Path(embedding_document_dir).glob('*.storage_filename')) | |
if filename_list: | |
filenam = filename_list[0].name.replace(".storage_filename", "") | |
self.embeddings_map_from_md5[embedding_document_dir.name] = filenam | |
self.embeddings_map_to_md5[filenam] = embedding_document_dir.name | |
print("Embedding loaded: ", len(self.embeddings_dict.keys())) | |
def get_loaded_embeddings_ids(self): | |
return list(self.embeddings_dict.keys()) | |
def get_md5_from_filename(self, filename): | |
return self.embeddings_map_to_md5[filename] | |
def get_filename_from_md5(self, md5): | |
return self.embeddings_map_from_md5[md5] | |
def query_document(self, query: str, doc_id, output_parser=None, context_size=4, extraction_schema=None, | |
verbose=False, memory=None) -> ( | |
Any, str): | |
# self.load_embeddings(self.embeddings_root_path) | |
if verbose: | |
print(query) | |
response = self._run_query(doc_id, query, context_size=context_size, memory=memory) | |
response = response['output_text'] if 'output_text' in response else response | |
if verbose: | |
print(doc_id, "->", response) | |
if output_parser: | |
try: | |
return self._parse_json(response, output_parser), response | |
except Exception as oe: | |
print("Failing to parse the response", oe) | |
return None, response | |
elif extraction_schema: | |
try: | |
chain = create_extraction_chain(extraction_schema, self.llm) | |
parsed = chain.run(response) | |
return parsed, response | |
except Exception as oe: | |
print("Failing to parse the response", oe) | |
return None, response | |
else: | |
return None, response | |
def query_storage(self, query: str, doc_id, context_size=4): | |
documents = self._get_context(doc_id, query, context_size) | |
context_as_text = [doc.page_content for doc in documents] | |
return context_as_text | |
def _parse_json(self, response, output_parser): | |
system_message = "You are an useful assistant expert in materials science, physics, and chemistry " \ | |
"that can process text and transform it to JSON." | |
human_message = """Transform the text between three double quotes in JSON.\n\n\n\n | |
{format_instructions}\n\nText: \"\"\"{text}\"\"\"""" | |
system_message_prompt = SystemMessagePromptTemplate.from_template(system_message) | |
human_message_prompt = HumanMessagePromptTemplate.from_template(human_message) | |
prompt_template = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt]) | |
results = self.llm( | |
prompt_template.format_prompt( | |
text=response, | |
format_instructions=output_parser.get_format_instructions() | |
).to_messages() | |
) | |
parsed_output = output_parser.parse(results.content) | |
return parsed_output | |
def _run_query(self, doc_id, query, memory=None, context_size=4): | |
relevant_documents = self._get_context(doc_id, query, context_size) | |
if memory: | |
return self.chain.run(input_documents=relevant_documents, | |
question=query) | |
else: | |
return self.chain.run(input_documents=relevant_documents, | |
question=query, | |
memory=memory) | |
# return self.chain({"input_documents": relevant_documents, "question": prompt_chat_template}, return_only_outputs=True) | |
def _get_context(self, doc_id, query, context_size=4): | |
db = self.embeddings_dict[doc_id] | |
retriever = db.as_retriever(search_kwargs={"k": context_size}) | |
relevant_documents = retriever.get_relevant_documents(query) | |
return relevant_documents | |
def get_all_context_by_document(self, doc_id): | |
"""Return the full context from the document""" | |
db = self.embeddings_dict[doc_id] | |
docs = db.get() | |
return docs['documents'] | |
def _get_context_multiquery(self, doc_id, query, context_size=4): | |
db = self.embeddings_dict[doc_id].as_retriever(search_kwargs={"k": context_size}) | |
multi_query_retriever = MultiQueryRetriever.from_llm(retriever=db, llm=self.llm) | |
relevant_documents = multi_query_retriever.get_relevant_documents(query) | |
return relevant_documents | |
def get_text_from_document(self, pdf_file_path, chunk_size=-1, perc_overlap=0.1, verbose=False): | |
"""Extract text from documents using Grobid, if chunk_size is < 0 it keep each paragraph separately""" | |
if verbose: | |
print("File", pdf_file_path) | |
filename = Path(pdf_file_path).stem | |
structure = self.grobid_processor.process_structure(pdf_file_path) | |
biblio = structure['biblio'] | |
biblio['filename'] = filename.replace(" ", "_") | |
if verbose: | |
print("Generating embeddings for:", hash, ", filename: ", filename) | |
texts = [] | |
metadatas = [] | |
ids = [] | |
if chunk_size < 0: | |
for passage in structure['passages']: | |
biblio_copy = copy.copy(biblio) | |
if len(str.strip(passage['text'])) > 0: | |
texts.append(passage['text']) | |
biblio_copy['type'] = passage['type'] | |
biblio_copy['section'] = passage['section'] | |
biblio_copy['subSection'] = passage['subSection'] | |
metadatas.append(biblio_copy) | |
ids.append(passage['passage_id']) | |
else: | |
document_text = " ".join([passage['text'] for passage in structure['passages']]) | |
# text_splitter = CharacterTextSplitter.from_tiktoken_encoder( | |
text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder( | |
chunk_size=chunk_size, | |
chunk_overlap=chunk_size * perc_overlap | |
) | |
texts = text_splitter.split_text(document_text) | |
metadatas = [biblio for _ in range(len(texts))] | |
ids = [id for id, t in enumerate(texts)] | |
return texts, metadatas, ids | |
def create_memory_embeddings(self, pdf_path, doc_id=None, chunk_size=500, perc_overlap=0.1): | |
texts, metadata, ids = self.get_text_from_document(pdf_path, chunk_size=chunk_size, perc_overlap=perc_overlap) | |
if doc_id: | |
hash = doc_id | |
else: | |
hash = metadata[0]['hash'] | |
if hash not in self.embeddings_dict.keys(): | |
self.embeddings_dict[hash] = Chroma.from_texts(texts, embedding=self.embedding_function, metadatas=metadata, | |
collection_name=hash) | |
else: | |
self.embeddings_dict[hash].delete(ids=self.embeddings_dict[hash].get()['ids']) | |
self.embeddings_dict[hash] = Chroma.from_texts(texts, embedding=self.embedding_function, metadatas=metadata, | |
collection_name=hash) | |
self.embeddings_root_path = None | |
return hash | |
def create_embeddings(self, pdfs_dir_path: Path, chunk_size=500, perc_overlap=0.1): | |
input_files = [] | |
for root, dirs, files in os.walk(pdfs_dir_path, followlinks=False): | |
for file_ in files: | |
if not (file_.lower().endswith(".pdf")): | |
continue | |
input_files.append(os.path.join(root, file_)) | |
for input_file in tqdm(input_files, total=len(input_files), unit='document', | |
desc="Grobid + embeddings processing"): | |
md5 = self.calculate_md5(input_file) | |
data_path = os.path.join(self.embeddings_root_path, md5) | |
if os.path.exists(data_path): | |
print(data_path, "exists. Skipping it ") | |
continue | |
texts, metadata, ids = self.get_text_from_document(input_file, chunk_size=chunk_size, | |
perc_overlap=perc_overlap) | |
filename = metadata[0]['filename'] | |
vector_db_document = Chroma.from_texts(texts, | |
metadatas=metadata, | |
embedding=self.embedding_function, | |
persist_directory=data_path) | |
vector_db_document.persist() | |
with open(os.path.join(data_path, filename + ".storage_filename"), 'w') as fo: | |
fo.write("") | |
def calculate_md5(input_file: Union[Path, str]): | |
import hashlib | |
md5_hash = hashlib.md5() | |
with open(input_file, 'rb') as fi: | |
md5_hash.update(fi.read()) | |
return md5_hash.hexdigest().upper() | |