Spaces:
Sleeping
Sleeping
lgfunderburk
commited on
Commit
•
df56dc3
1
Parent(s):
b8bd17b
init app
Browse files- .gitignore +161 -0
- Dockerfile +43 -0
- README.md +40 -6
- __init__.py +0 -0
- app.py +31 -0
- chainlit.md +25 -0
- faissdenseretrieval.py +90 -0
- poetry.lock +0 -0
- pyproject.toml +26 -0
- requirements.txt +0 -0
.gitignore
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
share/python-wheels/
|
24 |
+
*.egg-info/
|
25 |
+
.installed.cfg
|
26 |
+
*.egg
|
27 |
+
MANIFEST
|
28 |
+
|
29 |
+
# PyInstaller
|
30 |
+
# Usually these files are written by a python script from a template
|
31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
32 |
+
*.manifest
|
33 |
+
*.spec
|
34 |
+
|
35 |
+
# Installer logs
|
36 |
+
pip-log.txt
|
37 |
+
pip-delete-this-directory.txt
|
38 |
+
|
39 |
+
# Unit test / coverage reports
|
40 |
+
htmlcov/
|
41 |
+
.tox/
|
42 |
+
.nox/
|
43 |
+
.coverage
|
44 |
+
.coverage.*
|
45 |
+
.cache
|
46 |
+
nosetests.xml
|
47 |
+
coverage.xml
|
48 |
+
*.cover
|
49 |
+
*.py,cover
|
50 |
+
.hypothesis/
|
51 |
+
.pytest_cache/
|
52 |
+
cover/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
.pybuilder/
|
76 |
+
target/
|
77 |
+
|
78 |
+
# Jupyter Notebook
|
79 |
+
.ipynb_checkpoints
|
80 |
+
|
81 |
+
# IPython
|
82 |
+
profile_default/
|
83 |
+
ipython_config.py
|
84 |
+
|
85 |
+
# pyenv
|
86 |
+
# For a library or package, you might want to ignore these files since the code is
|
87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
88 |
+
# .python-version
|
89 |
+
|
90 |
+
# pipenv
|
91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
94 |
+
# install all needed dependencies.
|
95 |
+
#Pipfile.lock
|
96 |
+
|
97 |
+
# poetry
|
98 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
100 |
+
# commonly ignored for libraries.
|
101 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
102 |
+
#poetry.lock
|
103 |
+
|
104 |
+
# pdm
|
105 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
106 |
+
#pdm.lock
|
107 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
108 |
+
# in version control.
|
109 |
+
# https://pdm.fming.dev/#use-with-ide
|
110 |
+
.pdm.toml
|
111 |
+
|
112 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
113 |
+
__pypackages__/
|
114 |
+
|
115 |
+
# Celery stuff
|
116 |
+
celerybeat-schedule
|
117 |
+
celerybeat.pid
|
118 |
+
|
119 |
+
# SageMath parsed files
|
120 |
+
*.sage.py
|
121 |
+
|
122 |
+
# Environments
|
123 |
+
.env
|
124 |
+
.venv
|
125 |
+
env/
|
126 |
+
venv/
|
127 |
+
ENV/
|
128 |
+
env.bak/
|
129 |
+
venv.bak/
|
130 |
+
|
131 |
+
# Spyder project settings
|
132 |
+
.spyderproject
|
133 |
+
.spyproject
|
134 |
+
|
135 |
+
# Rope project settings
|
136 |
+
.ropeproject
|
137 |
+
|
138 |
+
# mkdocs documentation
|
139 |
+
/site
|
140 |
+
|
141 |
+
# mypy
|
142 |
+
.mypy_cache/
|
143 |
+
.dmypy.json
|
144 |
+
dmypy.json
|
145 |
+
|
146 |
+
# Pyre type checker
|
147 |
+
.pyre/
|
148 |
+
|
149 |
+
# pytype static type analyzer
|
150 |
+
.pytype/
|
151 |
+
|
152 |
+
# Cython debug symbols
|
153 |
+
cython_debug/
|
154 |
+
|
155 |
+
# PyCharm
|
156 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
157 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
158 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
159 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
160 |
+
#.idea/
|
161 |
+
.DS_Store
|
Dockerfile
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Use the official Python image as the base image
|
2 |
+
FROM python:3.9
|
3 |
+
|
4 |
+
# Set the working directory to /app
|
5 |
+
WORKDIR /app
|
6 |
+
|
7 |
+
# Create a new user and switch to this user
|
8 |
+
RUN useradd -m -u 1000 user
|
9 |
+
USER user
|
10 |
+
|
11 |
+
# Set environment variables for the new user
|
12 |
+
ENV HOME=/home/user \
|
13 |
+
PATH=/home/user/.local/bin:$PATH
|
14 |
+
|
15 |
+
# Set the working directory for the user
|
16 |
+
WORKDIR $HOME/app
|
17 |
+
|
18 |
+
# Copy the current directory contents into the container at /app
|
19 |
+
COPY --chown=user . $HOME/app
|
20 |
+
|
21 |
+
# Copy requirements file
|
22 |
+
COPY ./requirements.txt ~/app/requirements.txt
|
23 |
+
|
24 |
+
# Copy poetry configuration files
|
25 |
+
COPY pyproject.toml poetry.lock /app/
|
26 |
+
|
27 |
+
# Upgrade pip and install poetry
|
28 |
+
RUN pip install --upgrade pip
|
29 |
+
RUN pip install farm-haystack[faiss]
|
30 |
+
RUN pip install poetry
|
31 |
+
|
32 |
+
# Set environment variable to create a virtual environment within the project directory
|
33 |
+
ENV POETRY_VIRTUALENVS_IN_PROJECT=true
|
34 |
+
|
35 |
+
# Lock and install project dependencies using poetry
|
36 |
+
RUN poetry lock
|
37 |
+
RUN poetry install
|
38 |
+
|
39 |
+
# Copy the rest of the application code
|
40 |
+
COPY . .
|
41 |
+
|
42 |
+
# Define the command to run the app
|
43 |
+
CMD ["poetry", "run", "chainlit", "run", "app.py", "--port", "7860"]
|
README.md
CHANGED
@@ -1,11 +1,45 @@
|
|
1 |
---
|
2 |
-
title: Barbie
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: docker
|
|
|
7 |
pinned: false
|
8 |
-
license: openrail
|
9 |
---
|
10 |
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: Haystack-rag-about-Barbie
|
3 |
+
emoji: 🚀
|
4 |
+
colorFrom: indigo
|
5 |
+
colorTo: red
|
6 |
sdk: docker
|
7 |
+
app_file: app.py
|
8 |
pinned: false
|
|
|
9 |
---
|
10 |
|
11 |
+
|
12 |
+
# What do people think about the Barbie (2023) movie?
|
13 |
+
|
14 |
+
This chatbot can help you identify what people think about the Barbie (2023) movie. You can also ask it information about the movie.
|
15 |
+
|
16 |
+
### Mini demo
|
17 |
+
|
18 |
+
![](demo.gif)
|
19 |
+
|
20 |
+
### App
|
21 |
+
|
22 |
+
- Code to do web scraping from natural language query is in [faissdenseretrieval.py](faissdenseretrieval.py)
|
23 |
+
- Code to run the app is in [app.py](app.py)
|
24 |
+
|
25 |
+
### How it is built:
|
26 |
+
|
27 |
+
The application uses Haystack's WebRetriever class to scrape reviews from the internet. It uses a simple NLP query: "IMDB movie reviews for the Barbie movie (2023)" and 100 top k results were fetched. The results were then stored into a FAISS document store.
|
28 |
+
|
29 |
+
To retrieve answers I used the DensePassageRetriever class from Haystack using the following models:
|
30 |
+
|
31 |
+
```
|
32 |
+
query_embedding_model="facebook/dpr-question_encoder-single-nq-base",
|
33 |
+
passage_embedding_model="facebook/dpr-ctx_encoder-single-nq-base",
|
34 |
+
```
|
35 |
+
|
36 |
+
The embeddings were applied onto the documents in the document store.
|
37 |
+
|
38 |
+
I then initialized a Haystack pipeline whose nodes include a prompt node that uses OpenAI's GPT-4 and the DensePassageRetriever node. Its user interface was built using Chainlit.
|
39 |
+
|
40 |
+
### How does it work?
|
41 |
+
|
42 |
+
1. The WebRetriever will scrape the internet for reviews of the Barbie movie (2023) based on the natural language query using the SERP API.
|
43 |
+
2. The WebRetriever transforms the results into Document objects which can then be saved into a FAISS document store.
|
44 |
+
3. The DensePassageRetriever` node will apply embeddings to the documents in the document store and then it will use the embeddings to retrieve the top k results for a given query.
|
45 |
+
4. When a user asks a question, the PromptNode will use the top k results to generate an answer using OpenAI's GPT-4.
|
__init__.py
ADDED
File without changes
|
app.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import chainlit as cl
|
2 |
+
from faissdenseretrieval import initialize_documents, initialize_faiss_document_store, initialize_rag_pipeline
|
3 |
+
import os
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
|
6 |
+
# Load environment variables (if any)
|
7 |
+
load_dotenv("../.env")
|
8 |
+
load_dotenv()
|
9 |
+
serp = os.getenv("SERP_API_KEY")
|
10 |
+
openai_key = os.getenv("OPENAI_API_KEY")
|
11 |
+
|
12 |
+
# Initialize documents
|
13 |
+
documents = initialize_documents(serp_key=serp, nl_query="IMDB movie reviews for the Barbie movie (2023)")
|
14 |
+
|
15 |
+
# Initialize document store and retriever
|
16 |
+
document_store, retriever = initialize_faiss_document_store(documents=documents)
|
17 |
+
|
18 |
+
# Initialize pipeline
|
19 |
+
query_pipeline = initialize_rag_pipeline(retriever=retriever, openai_key=openai_key)
|
20 |
+
|
21 |
+
@cl.on_message
|
22 |
+
async def main(message: str):
|
23 |
+
# Use the pipeline to get a response
|
24 |
+
output = query_pipeline.run(query=message)
|
25 |
+
|
26 |
+
# Create a Chainlit message with the response
|
27 |
+
response = output['answers'][0].answer
|
28 |
+
msg = cl.Message(content=response)
|
29 |
+
|
30 |
+
# Send the message to the user
|
31 |
+
await msg.send()
|
chainlit.md
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# What do people think about the Barbie (2023) movie?
|
2 |
+
|
3 |
+
This chatbot can help you identify what people think about the Barbie (2023) movie. You can also ask it information about the movie.
|
4 |
+
|
5 |
+
### How it is built:
|
6 |
+
|
7 |
+
The application uses Haystack's WebRetriever class to scrape reviews from the internet. It uses a simple NLP query: "IMDB movie reviews for the Barbie movie (2023)" and 100 top k results were fetched. The results were then stored into a FAISS document store.
|
8 |
+
|
9 |
+
To retrieve answers I used the DensePassageRetriever class from Haystack using the following models:
|
10 |
+
|
11 |
+
|
12 |
+
query_embedding_model="facebook/dpr-question_encoder-single-nq-base",
|
13 |
+
passage_embedding_model="facebook/dpr-ctx_encoder-single-nq-base",
|
14 |
+
|
15 |
+
|
16 |
+
The embeddings were applied onto the documents in the document store.
|
17 |
+
|
18 |
+
I then initialized a Haystack pipeline whose nodes include a prompt node that uses OpenAI's GPT-4 and the DensePassageRetriever node. Its user interface was built using Chainlit.
|
19 |
+
|
20 |
+
### How does it work?
|
21 |
+
|
22 |
+
1. The WebRetriever will scrape the internet for reviews of the Barbie movie (2023) based on the natural language query using the SERP API.
|
23 |
+
2. The WebRetriever transforms the results into Document objects which can then be saved into a FAISS document store.
|
24 |
+
3. The DensePassageRetriever node will apply embeddings to the documents in the document store and then it will use the embeddings to retrieve the top k results for a given query.
|
25 |
+
4. When a user asks a question, the PromptNode will use the top k results to generate an answer using OpenAI's GPT-4.
|
faissdenseretrieval.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from haystack.nodes import WebRetriever
|
2 |
+
from haystack.schema import Document
|
3 |
+
from typing import List
|
4 |
+
from haystack.document_stores import FAISSDocumentStore
|
5 |
+
from haystack.nodes import AnswerParser, PromptNode, PromptTemplate
|
6 |
+
from haystack import Pipeline
|
7 |
+
from haystack.nodes import DensePassageRetriever
|
8 |
+
import os
|
9 |
+
from dotenv import load_dotenv
|
10 |
+
|
11 |
+
def initialize_documents(serp_key, nl_query):
|
12 |
+
"""
|
13 |
+
Initialize documents retrieved from the SERP API.
|
14 |
+
|
15 |
+
Args:
|
16 |
+
serp_key (str): API key for the SERP API.
|
17 |
+
nl_query (str): Natural language query to retrieve documents for.
|
18 |
+
|
19 |
+
"""
|
20 |
+
# Initialize WebRetriever
|
21 |
+
retriever = WebRetriever(api_key=serp_key,
|
22 |
+
mode="preprocessed_documents",
|
23 |
+
top_k=100)
|
24 |
+
|
25 |
+
# Retrieve documents based a natural language query
|
26 |
+
documents : List[Document] = retriever.retrieve(query=nl_query)
|
27 |
+
|
28 |
+
return documents
|
29 |
+
|
30 |
+
def initialize_faiss_document_store(documents):
|
31 |
+
"""
|
32 |
+
Initialize a FAISS document store and retriever.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
documents (List[Document]): List of documents to be stored in the document store.
|
36 |
+
|
37 |
+
Returns:
|
38 |
+
document_store (FAISSDocumentStore): FAISS document store.
|
39 |
+
retriever (DensePassageRetriever): Dense passage retriever.
|
40 |
+
"""
|
41 |
+
|
42 |
+
# Initialize document store
|
43 |
+
document_store = FAISSDocumentStore(faiss_index_factory_str="Flat", return_embedding=True)
|
44 |
+
|
45 |
+
retriever = DensePassageRetriever(
|
46 |
+
document_store=document_store,
|
47 |
+
query_embedding_model="facebook/dpr-question_encoder-single-nq-base",
|
48 |
+
passage_embedding_model="facebook/dpr-ctx_encoder-single-nq-base",
|
49 |
+
use_gpu=True,
|
50 |
+
embed_title=True,
|
51 |
+
)
|
52 |
+
|
53 |
+
# Delete existing documents in document store
|
54 |
+
document_store.delete_documents()
|
55 |
+
document_store.write_documents(documents)
|
56 |
+
|
57 |
+
# Add documents embeddings to index
|
58 |
+
document_store.update_embeddings(retriever=retriever)
|
59 |
+
|
60 |
+
return document_store, retriever
|
61 |
+
|
62 |
+
def initialize_rag_pipeline(retriever, openai_key):
|
63 |
+
"""
|
64 |
+
Initialize a pipeline for RAG-based question answering.
|
65 |
+
|
66 |
+
Args:
|
67 |
+
retriever (DensePassageRetriever): Dense passage retriever.
|
68 |
+
openai_key (str): API key for OpenAI.
|
69 |
+
|
70 |
+
Returns:
|
71 |
+
query_pipeline (Pipeline): Pipeline for RAG-based question answering.
|
72 |
+
"""
|
73 |
+
prompt_template = PromptTemplate(prompt = """"Answer the following query based on the provided context. If the context does
|
74 |
+
not include an answer, reply with 'The data does not contain information related to the question'.\n
|
75 |
+
Query: {query}\n
|
76 |
+
Documents: {join(documents)}
|
77 |
+
Answer:
|
78 |
+
""",
|
79 |
+
output_parser=AnswerParser())
|
80 |
+
prompt_node = PromptNode(model_name_or_path = "gpt-4",
|
81 |
+
api_key = openai_key,
|
82 |
+
default_prompt_template = prompt_template,
|
83 |
+
max_length = 500,
|
84 |
+
model_kwargs={"stream":True})
|
85 |
+
|
86 |
+
query_pipeline = Pipeline()
|
87 |
+
query_pipeline.add_node(component=retriever, name="Retriever", inputs=["Query"])
|
88 |
+
query_pipeline.add_node(component=prompt_node, name="PromptNode", inputs=["Retriever"])
|
89 |
+
|
90 |
+
return query_pipeline
|
poetry.lock
ADDED
The diff for this file is too large to render.
See raw diff
|
|
pyproject.toml
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[tool.poetry]
|
2 |
+
name = "llmops-with-haystack"
|
3 |
+
version = "0.1.0"
|
4 |
+
description = ""
|
5 |
+
authors = ["Laura Gutierrez Funderburk <lgutierrwr@gmail.com>"]
|
6 |
+
license = "Apache 2.0"
|
7 |
+
readme = "README.md"
|
8 |
+
|
9 |
+
[tool.poetry.dependencies]
|
10 |
+
python = "^3.9"
|
11 |
+
torch = [
|
12 |
+
{url = "https://download.pytorch.org/whl/cpu/torch-1.10.0%2Bcpu-cp39-cp39-linux_x86_64.whl", markers = "sys_platform == 'linux'"},
|
13 |
+
]
|
14 |
+
farm-haystack = {extras = ["faiss"], version = "^1.21.2"}
|
15 |
+
chainlit = "^0.7.0"
|
16 |
+
openai = "^0.28.0"
|
17 |
+
jupyter = "^1.0.0"
|
18 |
+
ipykernel = "^6.25.2"
|
19 |
+
python-dotenv = "^1.0.0"
|
20 |
+
datasets = "^2.14.5"
|
21 |
+
nltk = "^3.8.1"
|
22 |
+
|
23 |
+
|
24 |
+
[build-system]
|
25 |
+
requires = ["poetry-core"]
|
26 |
+
build-backend = "poetry.core.masonry.api"
|
requirements.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|