Spaces:
Sleeping
Sleeping
from collections import Counter | |
from itertools import count, groupby, islice | |
from operator import itemgetter | |
from typing import Any, Iterable, TypeVar | |
import gradio as gr | |
import requests | |
import pandas as pd | |
from datasets import Features | |
from gradio_huggingfacehub_search import HuggingfaceHubSearch | |
from analyze import PresidioEntity, analyzer, get_column_description, get_columns_with_strings, mask, presidio_scan_entities | |
MAX_ROWS = 100 | |
T = TypeVar("T") | |
DEFAULT_PRESIDIO_ENTITIES = sorted([ | |
'PERSON', | |
'CREDIT_CARD', | |
'US_SSN', | |
'US_DRIVER_LICENSE', | |
'PHONE_NUMBER', | |
'US_PASSPORT', | |
'EMAIL_ADDRESS', | |
'IP_ADDRESS', | |
'US_BANK_NUMBER', | |
'IBAN_CODE', | |
'EMAIL', | |
]) | |
WARNING_PRESIDIO_ENTITIES = sorted([ | |
'PHONE_NUMBER', | |
'US_PASSPORT', | |
'EMAIL_ADDRESS', | |
'IP_ADDRESS', | |
'US_BANK_NUMBER', | |
'IBAN_CODE', | |
'EMAIL', | |
]) | |
ALERT_PRESIDIO_ENTITIES = sorted([ | |
'CREDIT_CARD', | |
'US_SSN', | |
'US_PASSPORT', | |
'US_BANK_NUMBER', | |
'IBAN_CODE', | |
]) | |
def stream_rows(dataset: str, config: str, split: str) -> Iterable[dict[str, Any]]: | |
batch_size = 100 | |
for i in count(): | |
rows_resp = requests.get(f"https://datasets-server.huggingface.co/rows?dataset={dataset}&config={config}&split={split}&offset={i * batch_size}&length={batch_size}", timeout=20).json() | |
if "error" in rows_resp: | |
raise RuntimeError(rows_resp["error"]) | |
if not rows_resp["rows"]: | |
break | |
for row_item in rows_resp["rows"]: | |
yield row_item["row"] | |
class track_iter: | |
def __init__(self, it: Iterable[T]): | |
self.it = it | |
self.next_idx = 0 | |
def __iter__(self) -> T: | |
for item in self.it: | |
self.next_idx += 1 | |
yield item | |
def presidio_report(presidio_entities: list[PresidioEntity], next_row_idx: int, num_rows: int) -> dict[str, float]: | |
title = f"Scan finished: {len(presidio_entities)} entities found" if num_rows == next_row_idx else "Scan in progress..." | |
counter = Counter([title] * next_row_idx) | |
for row_idx, presidio_entities_per_row in groupby(presidio_entities, itemgetter("row_idx")): | |
counter.update(set("% of rows with " + presidio_entity["type"] for presidio_entity in presidio_entities_per_row)) | |
return dict((presidio_entity_type, presidio_entity_type_row_count / num_rows) for presidio_entity_type, presidio_entity_type_row_count in counter.most_common()) | |
def analyze_dataset(dataset: str, enabled_presidio_entities: list[str] = DEFAULT_PRESIDIO_ENTITIES, show_texts_without_masks: bool = False) -> pd.DataFrame: | |
info_resp = requests.get(f"https://datasets-server.huggingface.co/info?dataset={dataset}", timeout=3).json() | |
if "error" in info_resp: | |
yield "β " + info_resp["error"], pd.DataFrame() | |
return | |
config = "default" if "default" in info_resp["dataset_info"] else next(iter(info_resp["dataset_info"])) | |
features = Features.from_dict(info_resp["dataset_info"][config]["features"]) | |
split = "train" if "train" in info_resp["dataset_info"][config]["splits"] else next(iter(info_resp["dataset_info"][config]["splits"])) | |
num_rows = min(info_resp["dataset_info"][config]["splits"][split]["num_examples"], MAX_ROWS) | |
scanned_columns = get_columns_with_strings(features) | |
columns_descriptions = [ | |
get_column_description(column_name, features[column_name]) for column_name in scanned_columns | |
] | |
rows = track_iter(islice(stream_rows(dataset, config, split), MAX_ROWS)) | |
presidio_entities = [] | |
for presidio_entity in presidio_scan_entities( | |
rows, scanned_columns=scanned_columns, columns_descriptions=columns_descriptions | |
): | |
if not show_texts_without_masks: | |
presidio_entity["text"] = mask(presidio_entity["text"]) | |
if presidio_entity["type"] in enabled_presidio_entities: | |
presidio_entities.append(presidio_entity) | |
yield presidio_report(presidio_entities, next_row_idx=rows.next_idx, num_rows=num_rows), pd.DataFrame(presidio_entities) | |
yield presidio_report(presidio_entities, next_row_idx=rows.next_idx, num_rows=num_rows), pd.DataFrame(presidio_entities) | |
with gr.Blocks() as demo: | |
gr.Markdown("# Scan datasets using Presidio") | |
gr.Markdown("The space takes an HF dataset name as an input, and returns the list of entities detected by Presidio in the first samples.") | |
inputs = [ | |
HuggingfaceHubSearch( | |
label="Hub Dataset ID", | |
placeholder="Search for dataset id on Huggingface", | |
search_type="dataset", | |
), | |
gr.CheckboxGroup( | |
label="Presidio entities", | |
choices=sorted(analyzer.get_supported_entities()), | |
value=DEFAULT_PRESIDIO_ENTITIES, | |
interactive=True, | |
), | |
gr.Checkbox(label="Show texts without masks", value=False), | |
] | |
button = gr.Button("Run Presidio Scan") | |
outputs = [ | |
gr.Label(show_label=False), | |
gr.DataFrame(), | |
] | |
button.click(analyze_dataset, inputs, outputs) | |
gr.Examples( | |
[ | |
["microsoft/orca-math-word-problems-200k"], | |
["tatsu-lab/alpaca"], | |
["Anthropic/hh-rlhf"], | |
["OpenAssistant/oasst1"], | |
["sidhq/email-thread-summary"], | |
["lhoestq/fake_name_and_ssn"] | |
], | |
inputs, | |
outputs, | |
fn=analyze_dataset, | |
run_on_click=True, | |
cache_examples=False, | |
) | |
demo.launch() | |