File size: 6,729 Bytes
6dc0c9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import torch
import gc

import os
import time
import random
from typing import Dict, Optional, Sequence, List, Tuple
from transformers.cache_utils import Cache, DynamicCache
from transformers import (
    LlamaModel,
    LlamaForCausalLM,
    GenerationConfig,
    StoppingCriteria,
    StoppingCriteriaList,
    TextIteratorStreamer,
)
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
import torch.nn.functional as F


def get_jacobian_trajectory(
    model, tokenizer, input_ids, attention_mask, max_new_tokens
):
    bsz = input_ids.shape[0]
    prompt_len = [torch.sum(t) for t in attention_mask]
    max_prompt_len = max(prompt_len)
    total_len = max_prompt_len + max_new_tokens

    # initialize the first point of jacobian trajectory
    tokens = torch.full(
        (bsz, total_len), tokenizer.pad_token_id, dtype=torch.long, device=model.device
    )
    for i in range(bsz):
        tokens[i, :] = torch.tensor(
            random.choices(input_ids[i][attention_mask[i] == 1], k=total_len),
            dtype=torch.long,
            device=model.device,
        )
        tokens[i, : prompt_len[i]] = input_ids[i][: prompt_len[i]].to(
            dtype=torch.long, device=model.device
        )
    itr = 0
    next_generation = tokens
    generate_attention_mask = torch.full_like(next_generation, 1).to(model.device)
    accurate_lengths = torch.tensor([prompt_len[i].item()] * bsz, device=model.device)
    prev_len = 0
    while True:
        current_generation = next_generation
        with torch.no_grad():
            logits = model(current_generation, generate_attention_mask).logits
        next_generation = torch.argmax(
            torch.nn.functional.softmax(logits, dim=-1) / 0.001, dim=-1
        )

        # hold prompt unchanged and update generated tokens
        for i in range(bsz):
            next_generation[i, :] = torch.cat(
                (
                    tokens[i, : prompt_len[i]],
                    next_generation[i, prompt_len[i] - 1 : total_len - 1],
                ),
                dim=0,
            )

        if (
            torch.all(torch.eq(next_generation, current_generation)).item()
            and itr == max_new_tokens
            or len(
                torch.where(
                    current_generation[0, : accurate_lengths[0]]
                    == tokenizer.eos_token_id
                )[0]
            )
            > 0
        ):
            # forced exit due to max_new_tokens constraint or eos reached
            return next_generation, itr

        # skip the first itr, current_generation has not been updated yet
        if itr != 0:
            if torch.all(torch.eq(next_generation, current_generation)).item():
                matched_position = total_len
            else:
                matched_position = (
                    torch.eq(current_generation, next_generation).squeeze(0) == False
                ).nonzero(as_tuple=True)[0][0]
            fast_forward_cnt = matched_position - accurate_lengths[0]

            for i in range(bsz):
                accurate_lengths[i] = matched_position.item()

            # flush and print the first sequence
            generated_str = tokenizer.decode(
                next_generation[0, prompt_len[0] : accurate_lengths[0]],
                skip_special_tokens=True,
                spaces_between_special_tokens=False,
                clean_up_tokenization_spaces=True,
            )
            print(generated_str[prev_len:], flush=True, end="")
            prev_len = len(generated_str)

            if torch.all(torch.eq(next_generation, current_generation)).item():
                # early termination: itr < max_new_tokens
                return next_generation, itr

        itr += 1


def generate_stream_cllm(
    model,
    tokenizer,
    params,
    device,
    context_len,
    stream_interval=2,
    judge_sent_end=False,
):
    # converge_step = []
    prompt = params["prompt"]
    inputs = tokenizer(prompt, return_tensors="pt").to(device)
    max_new_tokens = int(params.get("n_token_seq_length", 32))
    max_new_seq_len = int(params.get("max_new_tokens", 1024))

    prompt_len = torch.sum(inputs["attention_mask"], dim=-1)
    generation = inputs["input_ids"]
    input_echo_len = len(generation)

    ### generation phase
    itr = 0
    eos_reached = False
    while True:
        if itr == 0:
            input_ids = inputs["input_ids"]
            input_masks = inputs["attention_mask"]
        else:
            input_masks = torch.ones_like(input_ids).to(device)
            for j in range(bsz):
                input_masks[j][
                    torch.sum(inputs["attention_mask"], dim=-1)[j]
                    + itr * max_new_tokens :
                ] = 0

        bsz = input_ids.shape[0]
        eos_reached = torch.tensor([False] * bsz, device=device)

        generation, iter_steps = get_jacobian_trajectory(
            model=model,
            tokenizer=tokenizer,
            input_ids=input_ids,
            attention_mask=input_masks,
            max_new_tokens=max_new_tokens,
        )

        ### inspect <eos>
        for j in range(bsz):
            prompt_len = torch.sum(input_masks, dim=-1)
            eos_positions = torch.where(generation[j] == tokenizer.eos_token_id)[0]

            if len(eos_positions) == 0:
                # no EOS, continue to the next item in the batch
                generation[j][prompt_len[j] + max_new_tokens :] = tokenizer.pad_token_id
                continue
            # otherwise, set tokens coming after EOS as pad
            else:
                if len(eos_positions) != 0:
                    eos_reached[j] = True
                    generation[j, int(eos_positions[0]) + 1 :] = tokenizer.pad_token_id

        itr += 1

        if all(eos_reached) or itr * max_new_tokens >= max_new_seq_len:
            break
        input_ids = generation[
            torch.where(eos_reached == False)[0].tolist(), ...
        ]  # delete samples with <eos> generated

    if all(eos_reached):
        finish_reason = "eos"
    elif itr * max_new_tokens > max_new_seq_len:
        finish_reason = "length"
    else:
        finish_reason = "stop"

    output = tokenizer.decode(input_ids[0], skip_special_tokens=False)

    yield {
        "text": "",
        "usage": {
            "prompt_tokens": input_echo_len,
            "completion_tokens": itr * max_new_tokens,
            "total_tokens": input_echo_len + itr * max_new_tokens,
        },
        "finish_reason": finish_reason,
    }

    # clean
    gc.collect()
    torch.cuda.empty_cache()
    if device == "xpu":
        torch.xpu.empty_cache()
    if device == "npu":
        torch.npu.empty_cache()