""" The gradio demo server for chatting with a single model. """ import argparse from collections import defaultdict import datetime import hashlib import json import os import random import time import uuid import gradio as gr import requests from src.constants import ( LOGDIR, WORKER_API_TIMEOUT, ErrorCode, MODERATION_MSG, CONVERSATION_LIMIT_MSG, RATE_LIMIT_MSG, SERVER_ERROR_MSG, INPUT_CHAR_LEN_LIMIT, CONVERSATION_TURN_LIMIT, SESSION_EXPIRATION_TIME, ) from src.model.model_adapter import ( get_conversation_template, ) from src.model.model_registry import get_model_info, model_info from src.serve.api_provider import get_api_provider_stream_iter from src.serve.remote_logger import get_remote_logger from src.utils import ( build_logger, get_window_url_params_js, get_window_url_params_with_tos_js, moderation_filter, parse_gradio_auth_creds, load_image, ) logger = build_logger("gradio_web_server", "gradio_web_server.log") headers = {"User-Agent": "FastChat Client"} no_change_btn = gr.Button() enable_btn = gr.Button(interactive=True, visible=True) disable_btn = gr.Button(interactive=False) invisible_btn = gr.Button(interactive=False, visible=False) controller_url = None enable_moderation = False use_remote_storage = False acknowledgment_md = """ ### Terms of Service Users are required to agree to the following terms before using the service: The service is a research preview. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. Please do not upload any private information. The service collects user dialogue data, including both text and images, and reserves the right to distribute it under a Creative Commons Attribution (CC-BY) or a similar license. ### Acknowledgment We thank [UC Berkeley SkyLab](https://sky.cs.berkeley.edu/), [Kaggle](https://www.kaggle.com/), [MBZUAI](https://mbzuai.ac.ae/), [a16z](https://www.a16z.com/), [Together AI](https://www.together.ai/), [Hyperbolic](https://hyperbolic.xyz/), [Anyscale](https://www.anyscale.com/), [HuggingFace](https://huggingface.co/) for their generous [sponsorship](https://lmsys.org/donations/). """ # JSON file format of API-based models: # { # "gpt-3.5-turbo": { # "model_name": "gpt-3.5-turbo", # "api_type": "openai", # "api_base": "https://api.openai.com/v1", # "api_key": "sk-******", # "anony_only": false # } # } # # - "api_type" can be one of the following: openai, anthropic, gemini, or mistral. For custom APIs, add a new type and implement it accordingly. # - "anony_only" indicates whether to display this model in anonymous mode only. api_endpoint_info = {} class State: def __init__(self, model_name, is_vision=False): self.conv = get_conversation_template(model_name) self.conv_id = uuid.uuid4().hex self.skip_next = False self.model_name = model_name self.oai_thread_id = None self.is_vision = is_vision # NOTE(chris): This could be sort of a hack since it assumes the user only uploads one image. If they can upload multiple, we should store a list of image hashes. self.has_csam_image = False self.regen_support = True if "browsing" in model_name: self.regen_support = False self.init_system_prompt(self.conv) def init_system_prompt(self, conv): system_prompt = conv.get_system_message() if len(system_prompt) == 0: return current_date = datetime.datetime.now().strftime("%Y-%m-%d") system_prompt = system_prompt.replace("{{currentDateTime}}", current_date) conv.set_system_message(system_prompt) def to_gradio_chatbot(self): return self.conv.to_gradio_chatbot() def dict(self): base = self.conv.dict() base.update( { "conv_id": self.conv_id, "model_name": self.model_name, } ) if self.is_vision: base.update({"has_csam_image": self.has_csam_image}) return base def set_global_vars(controller_url_, enable_moderation_, use_remote_storage_): global controller_url, enable_moderation, use_remote_storage controller_url = controller_url_ enable_moderation = enable_moderation_ use_remote_storage = use_remote_storage_ def get_conv_log_filename(is_vision=False, has_csam_image=False): t = datetime.datetime.now() conv_log_filename = f"{t.year}-{t.month:02d}-{t.day:02d}-conv.json" if is_vision and not has_csam_image: name = os.path.join(LOGDIR, f"vision-tmp-{conv_log_filename}") elif is_vision and has_csam_image: name = os.path.join(LOGDIR, f"vision-csam-{conv_log_filename}") else: name = os.path.join(LOGDIR, conv_log_filename) return name def get_model_list(controller_url, register_api_endpoint_file, vision_arena): global api_endpoint_info # Add models from the controller if controller_url: ret = requests.post(controller_url + "/refresh_all_workers") assert ret.status_code == 200 if vision_arena: ret = requests.post(controller_url + "/list_multimodal_models") models = ret.json()["models"] else: ret = requests.post(controller_url + "/list_language_models") models = ret.json()["models"] else: models = [] # Add models from the API providers if register_api_endpoint_file: api_endpoint_info = json.load(open(register_api_endpoint_file)) for mdl, mdl_dict in api_endpoint_info.items(): mdl_vision = mdl_dict.get("vision-arena", False) mdl_text = mdl_dict.get("text-arena", True) if vision_arena and mdl_vision: models.append(mdl) if not vision_arena and mdl_text: models.append(mdl) # Remove anonymous models models = list(set(models)) visible_models = models.copy() for mdl in models: if mdl not in api_endpoint_info: continue mdl_dict = api_endpoint_info[mdl] if mdl_dict["anony_only"]: visible_models.remove(mdl) # Sort models and add descriptions priority = {k: f"___{i:03d}" for i, k in enumerate(model_info)} models.sort(key=lambda x: priority.get(x, x)) visible_models.sort(key=lambda x: priority.get(x, x)) logger.info(f"All models: {models}") logger.info(f"Visible models: {visible_models}") return visible_models, models def load_demo_single(models, url_params): selected_model = models[0] if len(models) > 0 else "" if "model" in url_params: model = url_params["model"] if model in models: selected_model = model dropdown_update = gr.Dropdown(choices=models, value=selected_model, visible=True) state = None return state, dropdown_update def load_demo(url_params, request: gr.Request): global models ip = get_ip(request) logger.info(f"load_demo. ip: {ip}. params: {url_params}") if args.model_list_mode == "reload": models, all_models = get_model_list( controller_url, args.register_api_endpoint_file, vision_arena=False ) return load_demo_single(models, url_params) def vote_last_response(state, vote_type, model_selector, request: gr.Request): filename = get_conv_log_filename() if "llava" in model_selector: filename = filename.replace("2024", "vision-tmp-2024") with open(filename, "a") as fout: data = { "tstamp": round(time.time(), 4), "type": vote_type, "model": model_selector, "state": state.dict(), "ip": get_ip(request), } fout.write(json.dumps(data) + "\n") get_remote_logger().log(data) def upvote_last_response(state, model_selector, request: gr.Request): ip = get_ip(request) logger.info(f"upvote. ip: {ip}") vote_last_response(state, "upvote", model_selector, request) return ("",) + (disable_btn,) * 3 def downvote_last_response(state, model_selector, request: gr.Request): ip = get_ip(request) logger.info(f"downvote. ip: {ip}") vote_last_response(state, "downvote", model_selector, request) return ("",) + (disable_btn,) * 3 def flag_last_response(state, model_selector, request: gr.Request): ip = get_ip(request) logger.info(f"flag. ip: {ip}") vote_last_response(state, "flag", model_selector, request) return ("",) + (disable_btn,) * 3 def regenerate(state, request: gr.Request): ip = get_ip(request) logger.info(f"regenerate. ip: {ip}") if not state.regen_support: state.skip_next = True return (state, state.to_gradio_chatbot(), "", None) + (no_change_btn,) * 5 state.conv.update_last_message(None) return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5 def clear_history(request: gr.Request): ip = get_ip(request) logger.info(f"clear_history. ip: {ip}") state = None return (state, [], "", None) + (disable_btn,) * 5 def get_ip(request: gr.Request): if "cf-connecting-ip" in request.headers: ip = request.headers["cf-connecting-ip"] elif "x-forwarded-for" in request.headers: ip = request.headers["x-forwarded-for"] else: ip = request.client.host return ip # TODO(Chris): At some point, we would like this to be a live-reporting feature. def report_csam_image(state, image): pass def _prepare_text_with_image(state, text, images, csam_flag): if images is not None and len(images) > 0: image = images[0] if len(state.conv.get_images()) > 0: # reset convo with new image state.conv = get_conversation_template(state.model_name) image = state.conv.convert_image_to_base64( image ) # PIL type is not JSON serializable if csam_flag: state.has_csam_image = True report_csam_image(state, image) text = text, [image] return text def add_text(state, model_selector, text, image, request: gr.Request): ip = get_ip(request) logger.info(f"add_text. ip: {ip}. len: {len(text)}") if state is None: state = State(model_selector) if len(text) <= 0: state.skip_next = True return (state, state.to_gradio_chatbot(), "", None) + (no_change_btn,) * 5 all_conv_text = state.conv.get_prompt() all_conv_text = all_conv_text[-2000:] + "\nuser: " + text flagged = moderation_filter(all_conv_text, [state.model_name]) # flagged = moderation_filter(text, [state.model_name]) if flagged: logger.info(f"violate moderation. ip: {ip}. text: {text}") # overwrite the original text text = MODERATION_MSG if (len(state.conv.messages) - state.conv.offset) // 2 >= CONVERSATION_TURN_LIMIT: logger.info(f"conversation turn limit. ip: {ip}. text: {text}") state.skip_next = True return (state, state.to_gradio_chatbot(), CONVERSATION_LIMIT_MSG, None) + ( no_change_btn, ) * 5 text = text[:INPUT_CHAR_LEN_LIMIT] # Hard cut-off text = _prepare_text_with_image(state, text, image, csam_flag=False) state.conv.append_message(state.conv.roles[0], text) state.conv.append_message(state.conv.roles[1], None) return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5 def model_worker_stream_iter( conv, model_name, worker_addr, prompt, temperature, repetition_penalty, top_p, max_new_tokens, images, ): # Make requests gen_params = { "model": model_name, "prompt": prompt, "temperature": temperature, "repetition_penalty": repetition_penalty, "top_p": top_p, "max_new_tokens": max_new_tokens, "stop": conv.stop_str, "stop_token_ids": conv.stop_token_ids, "echo": False, } logger.info(f"==== request ====\n{gen_params}") if len(images) > 0: gen_params["images"] = images # Stream output response = requests.post( worker_addr + "/worker_generate_stream", headers=headers, json=gen_params, stream=True, timeout=WORKER_API_TIMEOUT, ) for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"): if chunk: data = json.loads(chunk.decode()) yield data def is_limit_reached(model_name, ip): monitor_url = "http://localhost:9090" try: ret = requests.get( f"{monitor_url}/is_limit_reached?model={model_name}&user_id={ip}", timeout=1 ) obj = ret.json() return obj except Exception as e: logger.info(f"monitor error: {e}") return None def bot_response( state, temperature, top_p, max_new_tokens, request: gr.Request, apply_rate_limit=True, use_recommended_config=False, ): ip = get_ip(request) logger.info(f"bot_response. ip: {ip}") start_tstamp = time.time() temperature = float(temperature) top_p = float(top_p) max_new_tokens = int(max_new_tokens) if state.skip_next: # This generate call is skipped due to invalid inputs state.skip_next = False yield (state, state.to_gradio_chatbot()) + (no_change_btn,) * 5 return if apply_rate_limit: ret = is_limit_reached(state.model_name, ip) if ret is not None and ret["is_limit_reached"]: error_msg = RATE_LIMIT_MSG + "\n\n" + ret["reason"] logger.info(f"rate limit reached. ip: {ip}. error_msg: {ret['reason']}") state.conv.update_last_message(error_msg) yield (state, state.to_gradio_chatbot()) + (no_change_btn,) * 5 return conv, model_name = state.conv, state.model_name model_api_dict = ( api_endpoint_info[model_name] if model_name in api_endpoint_info else None ) images = conv.get_images() logger.info(f"model_name: {model_name};model_api_dict: {model_api_dict}") if model_api_dict is None: if model_name == "llava-original": from src.model.model_llava import inference output_text = inference()[0] else: output_text = "hello" stream_iter = [{ "error_code": 0, "text": output_text }] # Query worker address # ret = requests.post( # controller_url + "/get_worker_address", json={"model": model_name} # ) # worker_addr = ret.json()["address"] # logger.info(f"model_name: {model_name}, worker_addr: {worker_addr}") # # No available worker # if worker_addr == "": # conv.update_last_message(SERVER_ERROR_MSG) # yield ( # state, # state.to_gradio_chatbot(), # disable_btn, # disable_btn, # disable_btn, # enable_btn, # enable_btn, # ) # return # # Construct prompt. # # We need to call it here, so it will not be affected by "▌". # prompt = conv.get_prompt() # # Set repetition_penalty # if "t5" in model_name: # repetition_penalty = 1.2 # else: # repetition_penalty = 1.0 # stream_iter = model_worker_stream_iter( # conv, # model_name, # worker_addr, # prompt, # temperature, # repetition_penalty, # top_p, # max_new_tokens, # images, # ) else: if use_recommended_config: recommended_config = model_api_dict.get("recommended_config", None) if recommended_config is not None: temperature = recommended_config.get("temperature", temperature) top_p = recommended_config.get("top_p", top_p) max_new_tokens = recommended_config.get( "max_new_tokens", max_new_tokens ) stream_iter = [{ "error_code": 0, "text": "hello" }] # stream_iter = get_api_provider_stream_iter( # conv, # model_name, # model_api_dict, # temperature, # top_p, # max_new_tokens, # state, # ) html_code = ' ' # conv.update_last_message("▌") conv.update_last_message(html_code) yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5 try: data = {"text": ""} for i, data in enumerate(stream_iter): if data["error_code"] == 0: output = data["text"].strip() # conv.update_last_message(output + "▌") conv.update_last_message(output + html_code) yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5 else: output = data["text"] + f"\n\n(error_code: {data['error_code']})" conv.update_last_message(output) yield (state, state.to_gradio_chatbot()) + ( disable_btn, disable_btn, disable_btn, enable_btn, enable_btn, ) return output = data["text"].strip() conv.update_last_message(output) yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5 except requests.exceptions.RequestException as e: conv.update_last_message( f"{SERVER_ERROR_MSG}\n\n" f"(error_code: {ErrorCode.GRADIO_REQUEST_ERROR}, {e})" ) yield (state, state.to_gradio_chatbot()) + ( disable_btn, disable_btn, disable_btn, enable_btn, enable_btn, ) return except Exception as e: conv.update_last_message( f"{SERVER_ERROR_MSG}\n\n" f"(error_code: {ErrorCode.GRADIO_STREAM_UNKNOWN_ERROR}, {e})" ) yield (state, state.to_gradio_chatbot()) + ( disable_btn, disable_btn, disable_btn, enable_btn, enable_btn, ) return finish_tstamp = time.time() logger.info(f"{output}") conv.save_new_images( has_csam_images=state.has_csam_image, use_remote_storage=use_remote_storage ) filename = get_conv_log_filename( is_vision=state.is_vision, has_csam_image=state.has_csam_image ) with open(filename, "a") as fout: data = { "tstamp": round(finish_tstamp, 4), "type": "chat", "model": model_name, "gen_params": { "temperature": temperature, "top_p": top_p, "max_new_tokens": max_new_tokens, }, "start": round(start_tstamp, 4), "finish": round(finish_tstamp, 4), "state": state.dict(), "ip": get_ip(request), } fout.write(json.dumps(data) + "\n") get_remote_logger().log(data) block_css = """ #notice_markdown .prose { font-size: 110% !important; } #notice_markdown th { display: none; } #notice_markdown td { padding-top: 6px; padding-bottom: 6px; } #arena_leaderboard_dataframe table { font-size: 110%; } #full_leaderboard_dataframe table { font-size: 110%; } #model_description_markdown { font-size: 110% !important; } #leaderboard_markdown .prose { font-size: 110% !important; } #leaderboard_markdown td { padding-top: 6px; padding-bottom: 6px; } #leaderboard_dataframe td { line-height: 0.1em; } #about_markdown .prose { font-size: 110% !important; } #ack_markdown .prose { font-size: 110% !important; } #chatbot .prose { font-size: 105% !important; } .sponsor-image-about img { margin: 0 20px; margin-top: 20px; height: 40px; max-height: 100%; width: auto; float: left; } .chatbot h1, h2, h3 { margin-top: 8px; /* Adjust the value as needed */ margin-bottom: 0px; /* Adjust the value as needed */ padding-bottom: 0px; } .chatbot h1 { font-size: 130%; } .chatbot h2 { font-size: 120%; } .chatbot h3 { font-size: 110%; } .chatbot p:not(:first-child) { margin-top: 8px; } .typing { display: inline-block; } .cursor { display: inline-block; width: 7px; height: 1em; background-color: black; vertical-align: middle; animation: blink 1s infinite; } .dark .cursor { display: inline-block; width: 7px; height: 1em; background-color: white; vertical-align: middle; animation: blink 1s infinite; } @keyframes blink { 0%, 50% { opacity: 1; } 50.1%, 100% { opacity: 0; } } .app { max-width: 100% !important; padding: 20px !important; } a { color: #1976D2; /* Your current link color, a shade of blue */ text-decoration: none; /* Removes underline from links */ } a:hover { color: #63A4FF; /* This can be any color you choose for hover */ text-decoration: underline; /* Adds underline on hover */ } """ def get_model_description_md(models): model_description_md = """ | | | | | ---- | ---- | ---- | """ ct = 0 visited = set() for i, name in enumerate(models): minfo = get_model_info(name) if minfo.simple_name in visited: continue visited.add(minfo.simple_name) one_model_md = f"[{minfo.simple_name}]({minfo.link}): {minfo.description}" if ct % 3 == 0: model_description_md += "|" model_description_md += f" {one_model_md} |" if ct % 3 == 2: model_description_md += "\n" ct += 1 return model_description_md def build_about(): about_markdown = """ # About Us Chatbot Arena is an open-source research project developed by members from [LMSYS](https://lmsys.org) and UC Berkeley [SkyLab](https://sky.cs.berkeley.edu/). Our mission is to build an open platform to evaluate LLMs by human preference in the real-world. We open-source our [FastChat](https://github.com/lm-sys/FastChat) project at GitHub and release chat and human feedback dataset. We invite everyone to join us! ## Arena Core Team - [Lianmin Zheng](https://lmzheng.net/) (co-lead), [Wei-Lin Chiang](https://infwinston.github.io/) (co-lead), [Ying Sheng](https://sites.google.com/view/yingsheng/home), [Joseph E. Gonzalez](https://people.eecs.berkeley.edu/~jegonzal/), [Ion Stoica](http://people.eecs.berkeley.edu/~istoica/) ## Past Members - [Siyuan Zhuang](https://scholar.google.com/citations?user=KSZmI5EAAAAJ), [Hao Zhang](https://cseweb.ucsd.edu/~haozhang/) ## Learn more - Chatbot Arena [paper](https://arxiv.org/abs/2403.04132), [launch blog](https://lmsys.org/blog/2023-05-03-arena/), [dataset](https://github.com/lm-sys/FastChat/blob/main/docs/dataset_release.md), [policy](https://lmsys.org/blog/2024-03-01-policy/) - LMSYS-Chat-1M dataset [paper](https://arxiv.org/abs/2309.11998), LLM Judge [paper](https://arxiv.org/abs/2306.05685) ## Contact Us - Follow our [X](https://x.com/lmsysorg), [Discord](https://discord.gg/HSWAKCrnFx) or email us at lmsys.org@gmail.com - File issues on [GitHub](https://github.com/lm-sys/FastChat) - Download our datasets and models on [HuggingFace](https://huggingface.co/lmsys) ## Acknowledgment We thank [SkyPilot](https://github.com/skypilot-org/skypilot) and [Gradio](https://github.com/gradio-app/gradio) team for their system support. We also thank [UC Berkeley SkyLab](https://sky.cs.berkeley.edu/), [Kaggle](https://www.kaggle.com/), [MBZUAI](https://mbzuai.ac.ae/), [a16z](https://www.a16z.com/), [Together AI](https://www.together.ai/), [Hyperbolic](https://hyperbolic.xyz/), [Anyscale](https://www.anyscale.com/), [HuggingFace](https://huggingface.co/) for their generous sponsorship. Learn more about partnership [here](https://lmsys.org/donations/). """ gr.Markdown(about_markdown, elem_id="about_markdown") def build_single_model_ui(models, add_promotion_links=False): promotion = ( """ - | [GitHub](https://github.com/lm-sys/FastChat) | [Dataset](https://github.com/lm-sys/FastChat/blob/main/docs/dataset_release.md) | [Twitter](https://twitter.com/lmsysorg) | [Discord](https://discord.gg/HSWAKCrnFx) | - Introducing Llama 2: The Next Generation Open Source Large Language Model. [[Website]](https://ai.meta.com/llama/) - Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90% ChatGPT Quality. [[Blog]](https://lmsys.org/blog/2023-03-30-vicuna/) ## 🤖 Choose any model to chat """ if add_promotion_links else "" ) notice_markdown = f""" # 🏔️ Chat with Open Large Language Models {promotion} """ state = gr.State() gr.Markdown(notice_markdown, elem_id="notice_markdown") with gr.Group(elem_id="share-region-named"): with gr.Row(elem_id="model_selector_row"): model_selector = gr.Dropdown( choices=models, value=models[0] if len(models) > 0 else "", interactive=True, show_label=False, container=False, ) with gr.Row(): with gr.Accordion( f"🔍 Expand to see the descriptions of {len(models)} models", open=False, ): model_description_md = get_model_description_md(models) gr.Markdown(model_description_md, elem_id="model_description_markdown") chatbot = gr.Chatbot( elem_id="chatbot", label="Scroll down and start chatting", height=550, show_copy_button=True, ) with gr.Row(): textbox = gr.Textbox( show_label=False, placeholder="👉 Enter your prompt and press ENTER", elem_id="input_box", ) send_btn = gr.Button(value="Send", variant="primary", scale=0) with gr.Row() as button_row: upvote_btn = gr.Button(value="👍 Upvote", interactive=False) downvote_btn = gr.Button(value="👎 Downvote", interactive=False) flag_btn = gr.Button(value="⚠️ Flag", interactive=False) regenerate_btn = gr.Button(value="🔄 Regenerate", interactive=False) clear_btn = gr.Button(value="🗑️ Clear history", interactive=False) with gr.Accordion("Parameters", open=False) as parameter_row: temperature = gr.Slider( minimum=0.0, maximum=1.0, value=0.7, step=0.1, interactive=True, label="Temperature", ) top_p = gr.Slider( minimum=0.0, maximum=1.0, value=1.0, step=0.1, interactive=True, label="Top P", ) max_output_tokens = gr.Slider( minimum=16, maximum=2048, value=1024, step=64, interactive=True, label="Max output tokens", ) if add_promotion_links: gr.Markdown(acknowledgment_md, elem_id="ack_markdown") # Register listeners imagebox = gr.State(None) btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, clear_btn] upvote_btn.click( upvote_last_response, [state, model_selector], [textbox, upvote_btn, downvote_btn, flag_btn], ) downvote_btn.click( downvote_last_response, [state, model_selector], [textbox, upvote_btn, downvote_btn, flag_btn], ) flag_btn.click( flag_last_response, [state, model_selector], [textbox, upvote_btn, downvote_btn, flag_btn], ) regenerate_btn.click( regenerate, state, [state, chatbot, textbox, imagebox] + btn_list ).then( bot_response, [state, temperature, top_p, max_output_tokens], [state, chatbot] + btn_list, ) clear_btn.click(clear_history, None, [state, chatbot, textbox, imagebox] + btn_list) model_selector.change( clear_history, None, [state, chatbot, textbox, imagebox] + btn_list ) textbox.submit( add_text, [state, model_selector, textbox, imagebox], [state, chatbot, textbox, imagebox] + btn_list, ).then( bot_response, [state, temperature, top_p, max_output_tokens], [state, chatbot] + btn_list, ) send_btn.click( add_text, [state, model_selector, textbox, imagebox], [state, chatbot, textbox, imagebox] + btn_list, ).then( bot_response, [state, temperature, top_p, max_output_tokens], [state, chatbot] + btn_list, ) return [state, model_selector] def build_demo(models): with gr.Blocks( title="Chat with Open Large Language Models", theme=gr.themes.Default(), css=block_css, ) as demo: url_params = gr.JSON(visible=False) state, model_selector = build_single_model_ui(models) if args.model_list_mode not in ["once", "reload"]: raise ValueError(f"Unknown model list mode: {args.model_list_mode}") if args.show_terms_of_use: load_js = get_window_url_params_with_tos_js else: load_js = get_window_url_params_js demo.load( load_demo, [url_params], [ state, model_selector, ], js=load_js, ) return demo if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--host", type=str, default="0.0.0.0") parser.add_argument("--port", type=int) parser.add_argument( "--share", action="store_true", help="Whether to generate a public, shareable link", ) parser.add_argument( "--controller-url", type=str, default="http://localhost:21001", help="The address of the controller", ) parser.add_argument( "--concurrency-count", type=int, default=10, help="The concurrency count of the gradio queue", ) parser.add_argument( "--model-list-mode", type=str, default="once", choices=["once", "reload"], help="Whether to load the model list once or reload the model list every time", ) parser.add_argument( "--moderate", action="store_true", help="Enable content moderation to block unsafe inputs", ) parser.add_argument( "--show-terms-of-use", action="store_true", help="Shows term of use before loading the demo", ) parser.add_argument( "--register-api-endpoint-file", type=str, help="Register API-based model endpoints from a JSON file", ) parser.add_argument( "--gradio-auth-path", type=str, help='Set the gradio authentication file path. The file should contain one or more user:password pairs in this format: "u1:p1,u2:p2,u3:p3"', ) parser.add_argument( "--gradio-root-path", type=str, help="Sets the gradio root path, eg /abc/def. Useful when running behind a reverse-proxy or at a custom URL path prefix", ) parser.add_argument( "--use-remote-storage", action="store_true", default=False, help="Uploads image files to google cloud storage if set to true", ) args = parser.parse_args() logger.info(f"args: {args}") # Set global variables set_global_vars(args.controller_url, args.moderate, args.use_remote_storage) models, all_models = get_model_list( args.controller_url, args.register_api_endpoint_file, vision_arena=False ) # Set authorization credentials auth = None if args.gradio_auth_path is not None: auth = parse_gradio_auth_creds(args.gradio_auth_path) # Launch the demo demo = build_demo(models) demo.queue( default_concurrency_limit=args.concurrency_count, status_update_rate=10, api_open=False, ).launch( server_name=args.host, server_port=args.port, share=args.share, max_threads=200, auth=auth, root_path=args.gradio_root_path, )