import asyncio import re from typing import Dict, List import gradio as gr import httpx from huggingface_hub import ModelCard from cashews import cache cache.setup("mem://") API_URL = "https://davanstrien-huggingface-datasets-search-v2.hf.space/similar" HF_API_URL = "https://huggingface.co/api/datasets" README_URL_TEMPLATE = "https://huggingface.co/datasets/{}/raw/main/README.md" async def fetch_similar_datasets(dataset_id: str, limit: int = 10) -> List[Dict]: async with httpx.AsyncClient() as client: response = await client.get(f"{API_URL}?dataset_id={dataset_id}&n={limit + 1}") if response.status_code == 200: results = response.json()["results"] # Remove the input dataset from the results return [r for r in results if r["dataset_id"] != dataset_id][:limit] return [] async def fetch_dataset_card(dataset_id: str) -> str: url = README_URL_TEMPLATE.format(dataset_id) async with httpx.AsyncClient() as client: response = await client.get(url) return ModelCard(response.text).text if response.status_code == 200 else "" async def fetch_dataset_info(dataset_id: str) -> Dict: async with httpx.AsyncClient() as client: response = await client.get(f"{HF_API_URL}/{dataset_id}") return response.json() if response.status_code == 200 else {} def format_results( results: List[Dict], dataset_cards: List[str], dataset_infos: List[Dict] ) -> str: markdown = ( "

✨ Similar Datasets ✨

\n\n" ) for result, card, info in zip(results, dataset_cards, dataset_infos): hub_id = result["dataset_id"] similarity = result["similarity"] url = f"https://huggingface.co/datasets/{hub_id}" # Extract title from the card title_match = re.match(r"^#\s*(.+)", card, re.MULTILINE) title = title_match[1] if title_match else hub_id header = f"## [{title}]({url})" markdown += header + "\n" markdown += f"**Similarity Score:** {similarity:.4f}\n\n" if info: downloads = info.get("downloads", 0) likes = info.get("likes", 0) last_modified = info.get("lastModified", "N/A") markdown += f"**Downloads:** {downloads} | **Likes:** {likes} | **Last Modified:** {last_modified}\n\n" if card: # Remove the title from the card content card_without_title = re.sub( r"^#.*\n", "", card, count=1, flags=re.MULTILINE ) # Split the card into paragraphs paragraphs = card_without_title.split("\n\n") # Find the first non-empty text paragraph that's not just an image preview = next( ( p for p in paragraphs if p.strip() and not p.strip().startswith("![") and not p.strip().startswith(" 300 else preview # Add the preview markdown += f"{preview}\n\n" # Limit image size in the full dataset card full_card = re.sub( r'\1', full_card, ) markdown += f"
Full Dataset Card\n\n{full_card}\n\n
\n\n" markdown += "---\n\n" return markdown async def search_similar_datasets(dataset_id: str, limit: int = 10): results = await fetch_similar_datasets(dataset_id, limit) if not results: return "No similar datasets found." # Fetch dataset cards and info concurrently dataset_cards = await asyncio.gather( *[fetch_dataset_card(result["dataset_id"]) for result in results] ) dataset_infos = await asyncio.gather( *[fetch_dataset_info(result["dataset_id"]) for result in results] ) return format_results(results, dataset_cards, dataset_infos) with gr.Blocks() as demo: gr.Markdown("## 🤗 Dataset Similarity Search") with gr.Row(): gr.Markdown( "This Gradio app allows you to find similar datasets based on a given dataset ID. " "Enter a dataset ID (e.g., 'airtrain-ai/fineweb-edu-fortified') to find similar datasets with previews of their dataset cards." ) with gr.Row(): dataset_id = gr.Textbox( value="airtrain-ai/fineweb-edu-fortified", label="Dataset ID (e.g., airtrain-ai/fineweb-edu-fortified)", ) with gr.Row(): search_btn = gr.Button("Search Similar Datasets") max_results = gr.Slider( minimum=1, maximum=50, step=1, value=10, label="Maximum number of results", ) results = gr.Markdown() search_btn.click( lambda dataset_id, limit: asyncio.run( search_similar_datasets(dataset_id, limit) ), inputs=[dataset_id, max_results], outputs=results, ) demo.launch()