davanstrien's picture
davanstrien HF staff
linting
9380316
raw
history blame
4.12 kB
import os
from datetime import datetime, timedelta
from sys import platform
import gradio as gr
import pandas as pd
from diskcache import Cache
from dotenv import load_dotenv
from httpx import Client
from huggingface_hub import hf_hub_url, list_datasets
from tqdm.auto import tqdm
from tqdm.contrib.concurrent import thread_map
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")
USER_AGENT = os.getenv("USER_AGENT")
headers = {"authorization": f"Bearer ${HF_TOKEN}", "user-agent": USER_AGENT}
client = Client(
headers=headers,
timeout=60,
)
LOCAL = False
if platform == "darwin":
LOCAL = True
cache_dir = "cache" if LOCAL else "/data/diskcache"
cache = Cache(cache_dir)
def add_created_data(dataset):
_id = dataset._id
created = datetime.fromtimestamp(int(_id[:8], 16))
dataset_dict = dataset.__dict__
dataset_dict["created"] = created
return dataset_dict
def get_three_months_ago():
now = datetime.now()
return now - timedelta(days=90)
def get_readme_len(dataset):
try:
url = hf_hub_url(dataset["id"], "README.md", repo_type="dataset")
resp = client.get(url)
if resp.status_code == 200:
dataset["len"] = len(resp.text)
return dataset
except Exception as e:
print(e)
return None
def render_model_hub_link(hub_id):
link = f"https://huggingface.co/datasets/{hub_id}"
return (
f'<a target="_blank" href="{link}" style="color: var(--link-text-color);'
f' text-decoration: underline;text-decoration-style: dotted;">{hub_id}</a>'
)
@cache.memoize(expire=60 * 60 * 12)
def get_datasets():
return list(tqdm(iter(list_datasets(limit=None, full=True))))
@cache.memoize(expire=60 * 60 * 12)
def load_data():
datasets = get_datasets()
datasets = [add_created_data(dataset) for dataset in tqdm(datasets)]
filtered = [ds for ds in datasets if ds.get("cardData")]
filtered = [ds for ds in filtered if ds["created"] > get_three_months_ago()]
ds_with_len = thread_map(get_readme_len, filtered)
ds_with_len = [ds for ds in ds_with_len if ds is not None]
return ds_with_len
remove_orgs = {"HuggingFaceM4", "HuggingFaceBR4"}
columns_to_drop = [
"cardData",
"gated",
"sha",
"paperswithcode_id",
"tags",
"description",
"siblings",
"disabled",
"_id",
"private",
"author",
"citation",
]
def prep_dataframe(remove_orgs_and_users=remove_orgs, columns_to_drop=columns_to_drop):
ds_with_len = load_data()
if remove_orgs_and_users:
ds_with_len = [
ds for ds in ds_with_len if ds["author"] not in remove_orgs_and_users
]
df = pd.DataFrame(ds_with_len)
df["id"] = df["id"].apply(render_model_hub_link)
if columns_to_drop:
df = df.drop(columns=columns_to_drop)
return df
# def filter_df(
# df,
# created_after=None,
# create_before=None,
# min_likes=None,
# max_likes=None,
# min_len=None,
# max_len=None,
# min_downloads=None,
# max_downloads=None,
# ):
# if min_likes:
# df = df[df["likes"] >= min_likes]
# if max_likes:
# df = df[df["likes"] <= max_likes]
# if min_len:
# df = df[df["len"] >= min_len]
# if max_len:
# df = df[df["len"] <= max_len]
# if min_downloads:
# df = df[df["downloads"] >= min_downloads]
# if max_downloads:
# df = df[df["downloads"] <= max_downloads]
# return df
def filter_df_by_max_age(max_age_days=None):
df = prep_dataframe()
df = df.dropna(subset=["created"])
now = datetime.datetime.now()
if max_age_days is not None:
max_date = now - datetime.timedelta(days=max_age_days)
df = df[df["created"] >= max_date]
return df
with gr.Blocks() as demo:
max_age_days = gr.Slider(
label="Max Age (days)", value=7, minimum=0, maximum=90, step=1, interactive=True
)
output = gr.DataFrame(prep_dataframe(), datatype="markdown", min_width=160 * 2.5)
max_age_days.input(filter_df_by_max_age, inputs=[max_age_days], outputs=[output])
demo.launch()