import logging logging.getLogger("markdown_it").setLevel(logging.ERROR) logging.getLogger("urllib3").setLevel(logging.ERROR) logging.getLogger("httpcore").setLevel(logging.ERROR) logging.getLogger("httpx").setLevel(logging.ERROR) logging.getLogger("asyncio").setLevel(logging.ERROR) logging.getLogger("charset_normalizer").setLevel(logging.ERROR) logging.getLogger("torchaudio._extension").setLevel(logging.ERROR) logging.getLogger("multipart").setLevel(logging.WARNING) import gradio as gr import numpy as np import soundfile as sf from datetime import datetime from time import time as ttime from my_utils import load_audio from transformers import pipeline from text.cleaner import clean_text from feature_extractor import cnhubert from timeit import default_timer as timer from text import cleaned_text_to_sequence from module.models import SynthesizerTrn import os,re,sys,LangSegment,librosa,pdb,torch,pytz from module.mel_processing import spectrogram_torch from transformers.pipelines.audio_utils import ffmpeg_read from transformers import AutoModelForMaskedLM, AutoTokenizer from AR.models.t2s_lightning_module import Text2SemanticLightningModule if "_CUDA_VISIBLE_DEVICES" in os.environ: os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"] tz = pytz.timezone('Asia/Singapore') device = "cuda" if torch.cuda.is_available() else "cpu" def abs_path(dir): global_dir = os.path.dirname(os.path.abspath(sys.argv[0])) return(os.path.join(global_dir, dir)) gpt_path = abs_path("MODELS/22/22.ckpt") sovits_path=abs_path("MODELS/22/22.pth") cnhubert_base_path = os.environ.get("cnhubert_base_path", "pretrained_models/chinese-hubert-base") bert_path = os.environ.get("bert_path", "pretrained_models/chinese-roberta-wwm-ext-large") if not os.path.exists(cnhubert_base_path): cnhubert_base_path = "TencentGameMate/chinese-hubert-base" if not os.path.exists(bert_path): bert_path = "hfl/chinese-roberta-wwm-ext-large" cnhubert.cnhubert_base_path = cnhubert_base_path whisper_path = os.environ.get("whisper_path", "pretrained_models/whisper-tiny") if not os.path.exists(whisper_path): whisper_path = "openai/whisper-tiny" pipe = pipeline( task="automatic-speech-recognition", model=whisper_path, chunk_length_s=30, device=device,) is_half = eval( os.environ.get("is_half", "True" if torch.cuda.is_available() else "False") ) device = "cuda" if torch.cuda.is_available() else "cpu" tokenizer = AutoTokenizer.from_pretrained(bert_path) bert_model = AutoModelForMaskedLM.from_pretrained(bert_path) if is_half == True: bert_model = bert_model.half().to(device) else: bert_model = bert_model.to(device) def get_bert_feature(text, word2ph): with torch.no_grad(): inputs = tokenizer(text, return_tensors="pt") for i in inputs: inputs[i] = inputs[i].to(device) res = bert_model(**inputs, output_hidden_states=True) res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1] assert len(word2ph) == len(text) phone_level_feature = [] for i in range(len(word2ph)): repeat_feature = res[i].repeat(word2ph[i], 1) phone_level_feature.append(repeat_feature) phone_level_feature = torch.cat(phone_level_feature, dim=0) return phone_level_feature.T class DictToAttrRecursive(dict): def __init__(self, input_dict): super().__init__(input_dict) for key, value in input_dict.items(): if isinstance(value, dict): value = DictToAttrRecursive(value) self[key] = value setattr(self, key, value) def __getattr__(self, item): try: return self[item] except KeyError: raise AttributeError(f"Attribute {item} not found") def __setattr__(self, key, value): if isinstance(value, dict): value = DictToAttrRecursive(value) super(DictToAttrRecursive, self).__setitem__(key, value) super().__setattr__(key, value) def __delattr__(self, item): try: del self[item] except KeyError: raise AttributeError(f"Attribute {item} not found") ssl_model = cnhubert.get_model() if is_half == True: ssl_model = ssl_model.half().to(device) else: ssl_model = ssl_model.to(device) def change_sovits_weights(sovits_path): global vq_model, hps dict_s2 = torch.load(sovits_path, map_location="cpu") hps = dict_s2["config"] hps = DictToAttrRecursive(hps) hps.model.semantic_frame_rate = "25hz" vq_model = SynthesizerTrn( hps.data.filter_length // 2 + 1, hps.train.segment_size // hps.data.hop_length, n_speakers=hps.data.n_speakers, **hps.model ) if ("pretrained" not in sovits_path): del vq_model.enc_q if is_half == True: vq_model = vq_model.half().to(device) else: vq_model = vq_model.to(device) vq_model.eval() print(vq_model.load_state_dict(dict_s2["weight"], strict=False)) with open("./sweight.txt", "w", encoding="utf-8") as f: f.write(sovits_path) change_sovits_weights(sovits_path) def change_gpt_weights(gpt_path): global hz, max_sec, t2s_model, config hz = 50 dict_s1 = torch.load(gpt_path, map_location="cpu") config = dict_s1["config"] max_sec = config["data"]["max_sec"] t2s_model = Text2SemanticLightningModule(config, "****", is_train=False) t2s_model.load_state_dict(dict_s1["weight"]) if is_half == True: t2s_model = t2s_model.half() t2s_model = t2s_model.to(device) t2s_model.eval() total = sum([param.nelement() for param in t2s_model.parameters()]) print("Number of parameter: %.2fM" % (total / 1e6)) with open("./gweight.txt", "w", encoding="utf-8") as f: f.write(gpt_path) change_gpt_weights(gpt_path) def get_spepc(hps, filename): audio = load_audio(filename, int(hps.data.sampling_rate)) audio = torch.FloatTensor(audio) audio_norm = audio audio_norm = audio_norm.unsqueeze(0) spec = spectrogram_torch( audio_norm, hps.data.filter_length, hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length, center=False, ) return spec dict_language = { ("中文1"): "all_zh",#全部按中文识别 ("English"): "en",#全部按英文识别#######不变 ("日文1"): "all_ja",#全部按日文识别 ("中文"): "zh",#按中英混合识别####不变 ("日本語"): "ja",#按日英混合识别####不变 ("混合"): "auto",#多语种启动切分识别语种 } def splite_en_inf(sentence, language): pattern = re.compile(r'[a-zA-Z ]+') textlist = [] langlist = [] pos = 0 for match in pattern.finditer(sentence): start, end = match.span() if start > pos: textlist.append(sentence[pos:start]) langlist.append(language) textlist.append(sentence[start:end]) langlist.append("en") pos = end if pos < len(sentence): textlist.append(sentence[pos:]) langlist.append(language) # Merge punctuation into previous word for i in range(len(textlist)-1, 0, -1): if re.match(r'^[\W_]+$', textlist[i]): textlist[i-1] += textlist[i] del textlist[i] del langlist[i] # Merge consecutive words with the same language tag i = 0 while i < len(langlist) - 1: if langlist[i] == langlist[i+1]: textlist[i] += textlist[i+1] del textlist[i+1] del langlist[i+1] else: i += 1 return textlist, langlist def clean_text_inf(text, language): formattext = "" language = language.replace("all_","") for tmp in LangSegment.getTexts(text): if language == "ja": if tmp["lang"] == language or tmp["lang"] == "zh": formattext += tmp["text"] + " " continue if tmp["lang"] == language: formattext += tmp["text"] + " " while " " in formattext: formattext = formattext.replace(" ", " ") phones, word2ph, norm_text = clean_text(formattext, language) phones = cleaned_text_to_sequence(phones) return phones, word2ph, norm_text dtype=torch.float16 if is_half == True else torch.float32 def get_bert_inf(phones, word2ph, norm_text, language): language=language.replace("all_","") if language == "zh": bert = get_bert_feature(norm_text, word2ph).to(device)#.to(dtype) else: bert = torch.zeros( (1024, len(phones)), dtype=torch.float16 if is_half == True else torch.float32, ).to(device) return bert def nonen_clean_text_inf(text, language): if(language!="auto"): textlist, langlist = splite_en_inf(text, language) else: textlist=[] langlist=[] for tmp in LangSegment.getTexts(text): langlist.append(tmp["lang"]) textlist.append(tmp["text"]) print(textlist) print(langlist) phones_list = [] word2ph_list = [] norm_text_list = [] for i in range(len(textlist)): lang = langlist[i] phones, word2ph, norm_text = clean_text_inf(textlist[i], lang) phones_list.append(phones) if lang == "zh": word2ph_list.append(word2ph) norm_text_list.append(norm_text) print(word2ph_list) phones = sum(phones_list, []) word2ph = sum(word2ph_list, []) norm_text = ' '.join(norm_text_list) return phones, word2ph, norm_text def nonen_get_bert_inf(text, language): if(language!="auto"): textlist, langlist = splite_en_inf(text, language) else: textlist=[] langlist=[] for tmp in LangSegment.getTexts(text): langlist.append(tmp["lang"]) textlist.append(tmp["text"]) print(textlist) print(langlist) bert_list = [] for i in range(len(textlist)): lang = langlist[i] phones, word2ph, norm_text = clean_text_inf(textlist[i], lang) bert = get_bert_inf(phones, word2ph, norm_text, lang) bert_list.append(bert) bert = torch.cat(bert_list, dim=1) return bert splits = {",", "。", "?", "!", ",", ".", "?", "!", "~", ":", ":", "—", "…", } def get_first(text): pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]" text = re.split(pattern, text)[0].strip() return text def get_cleaned_text_final(text,language): if language in {"en","all_zh","all_ja"}: phones, word2ph, norm_text = clean_text_inf(text, language) elif language in {"zh", "ja","auto"}: phones, word2ph, norm_text = nonen_clean_text_inf(text, language) return phones, word2ph, norm_text def get_bert_final(phones, word2ph, text,language,device): if language == "en": bert = get_bert_inf(phones, word2ph, text, language) elif language in {"zh", "ja","auto"}: bert = nonen_get_bert_inf(text, language) elif language == "all_zh": bert = get_bert_feature(text, word2ph).to(device) else: bert = torch.zeros((1024, len(phones))).to(device) return bert def merge_short_text_in_array(texts, threshold): if (len(texts)) < 2: return texts result = [] text = "" for ele in texts: text += ele if len(text) >= threshold: result.append(text) text = "" if (len(text) > 0): if len(result) == 0: result.append(text) else: result[len(result) - 1] += text return result def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language, how_to_cut=("Do not split"), volume_scale=1.0): if not duration(ref_wav_path): return None if text == '': wprint("Please enter text to generate/请输入生成文字") return None t0 = ttime() startTime=timer() text=trim_text(text,text_language) change_sovits_weights(sovits_path) tprint(f'👌LOADED SoVITS Model: {sovits_path}') change_gpt_weights(gpt_path) tprint(f'👌LOADED GPT Model: {gpt_path}') prompt_language = dict_language[prompt_language] text_language = dict_language[text_language] prompt_text = prompt_text.strip("\n") if (prompt_text[-1] not in splits): prompt_text += "。" if prompt_language != "en" else "." text = text.strip("\n") if (text[0] not in splits and len(get_first(text)) < 4): text = "。" + text if text_language != "en" else "." + text print(("实际输入的参考文本:"), prompt_text) print(("📝实际输入的目标文本:"), text) zero_wav = np.zeros( int(hps.data.sampling_rate * 0.3), dtype=np.float16 if is_half == True else np.float32, ) with torch.no_grad(): wav16k, sr = librosa.load(ref_wav_path, sr=16000) if (wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000): errinfo='参考音频在3~10秒范围外,请更换!' raise OSError((errinfo)) wav16k = torch.from_numpy(wav16k) zero_wav_torch = torch.from_numpy(zero_wav) if is_half == True: wav16k = wav16k.half().to(device) zero_wav_torch = zero_wav_torch.half().to(device) else: wav16k = wav16k.to(device) zero_wav_torch = zero_wav_torch.to(device) wav16k = torch.cat([wav16k, zero_wav_torch]) ssl_content = ssl_model.model(wav16k.unsqueeze(0))[ "last_hidden_state" ].transpose( 1, 2 ) # .float() codes = vq_model.extract_latent(ssl_content) prompt_semantic = codes[0, 0] t1 = ttime() phones1, word2ph1, norm_text1=get_cleaned_text_final(prompt_text, prompt_language) if (how_to_cut == ("Split into groups of 4 sentences")): text = cut1(text) elif (how_to_cut == ("Split every 50 characters")): text = cut2(text) elif (how_to_cut == ("Split at CN/JP periods (。)")): text = cut3(text) elif (how_to_cut == ("Split at English periods (.)")): text = cut4(text) elif (how_to_cut == ("Split at punctuation marks")): text = cut5(text) while "\n\n" in text: text = text.replace("\n\n", "\n") print(("实际输入的目标文本(切句后):"), text) texts = text.split("\n") texts = merge_short_text_in_array(texts, 5) audio_opt = [] bert1=get_bert_final(phones1, word2ph1, norm_text1,prompt_language,device).to(dtype) for text in texts: if (len(text.strip()) == 0): continue if (text[-1] not in splits): text += "。" if text_language != "en" else "." print(("实际输入的目标文本(每句):"), text) phones2, word2ph2, norm_text2 = get_cleaned_text_final(text, text_language) bert2 = get_bert_final(phones2, word2ph2, norm_text2, text_language, device).to(dtype) bert = torch.cat([bert1, bert2], 1) all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0) bert = bert.to(device).unsqueeze(0) all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device) prompt = prompt_semantic.unsqueeze(0).to(device) t2 = ttime() with torch.no_grad(): # pred_semantic = t2s_model.model.infer( pred_semantic, idx = t2s_model.model.infer_panel( all_phoneme_ids, all_phoneme_len, prompt, bert, # prompt_phone_len=ph_offset, top_k=config["inference"]["top_k"], early_stop_num=hz * max_sec, ) t3 = ttime() # print(pred_semantic.shape,idx) pred_semantic = pred_semantic[:, -idx:].unsqueeze( 0 ) # .unsqueeze(0)#mq要多unsqueeze一次 refer = get_spepc(hps, ref_wav_path) # .to(device) if is_half == True: refer = refer.half().to(device) else: refer = refer.to(device) # audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0] try: audio = ( vq_model.decode( pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer ) .detach() .cpu() .numpy()[0, 0] ) except RuntimeError as e: wprint(f"The input text does not match the language/输入文本与语言不匹配: {e}") return None max_audio=np.abs(audio).max() if max_audio>1:audio/=max_audio audio_opt.append(audio) audio_opt.append(zero_wav) t4 = ttime() print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3)) #yield hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype(np.int16) audio_data = (np.concatenate(audio_opt, 0) * 32768).astype(np.int16) audio_data = (audio_data.astype(np.float32) * volume_scale).astype(np.int16) output_wav = "output_audio.wav" sf.write(output_wav, audio_data, hps.data.sampling_rate) endTime=timer() tprint(f'🆗TTS COMPLETE,{round(endTime-startTime,4)}s') return output_wav def split(todo_text): todo_text = todo_text.replace("……", "。").replace("——", ",") if todo_text[-1] not in splits: todo_text += "。" i_split_head = i_split_tail = 0 len_text = len(todo_text) todo_texts = [] while 1: if i_split_head >= len_text: break if todo_text[i_split_head] in splits: i_split_head += 1 todo_texts.append(todo_text[i_split_tail:i_split_head]) i_split_tail = i_split_head else: i_split_head += 1 return todo_texts def cut1(inp): inp = inp.strip("\n") inps = split(inp) split_idx = list(range(0, len(inps), 4)) split_idx[-1] = None if len(split_idx) > 1: opts = [] for idx in range(len(split_idx) - 1): opts.append("".join(inps[split_idx[idx]: split_idx[idx + 1]])) else: opts = [inp] return "\n".join(opts) def cut2(inp): inp = inp.strip("\n") inps = split(inp) if len(inps) < 2: return inp opts = [] summ = 0 tmp_str = "" for i in range(len(inps)): summ += len(inps[i]) tmp_str += inps[i] if summ > 50: summ = 0 opts.append(tmp_str) tmp_str = "" if tmp_str != "": opts.append(tmp_str) # print(opts) if len(opts) > 1 and len(opts[-1]) < 50: opts[-2] = opts[-2] + opts[-1] opts = opts[:-1] return "\n".join(opts) def cut3(inp): inp = inp.strip("\n") return "\n".join(["%s" % item for item in inp.strip("。").split("。")]) def cut4(inp): inp = inp.strip("\n") return "\n".join(["%s" % item for item in inp.strip(".").split(".")]) # contributed by https://github.com/AI-Hobbyist/GPT-SoVITS/blob/main/GPT_SoVITS/inference_webui.py def cut5(inp): # if not re.search(r'[^\w\s]', inp[-1]): # inp += '。' inp = inp.strip("\n") punds = r'[,.;?!、,。?!;:]' items = re.split(f'({punds})', inp) items = ["".join(group) for group in zip(items[::2], items[1::2])] opt = "\n".join(items) return opt def custom_sort_key(s): # 使用正则表达式提取字符串中的数字部分和非数字部分 parts = re.split('(\d+)', s) # 将数字部分转换为整数,非数字部分保持不变 parts = [int(part) if part.isdigit() else part for part in parts] return parts def tprint(text): now=datetime.now(tz).strftime('%H:%M:%S') print(f'UTC+8 - {now} - {text}') def wprint(text): print(text) gr.Warning(text) #裁切文本 def trim_text(text,language): limit_cj = 120 #character limit_en = 60 #words search_limit_cj = limit_cj+30 search_limit_en = limit_en +30 if language =='English': words = text.split() if len(words) <= limit_en: return text # 对英文文本进行处理 for i in range(limit_en, -1, -1): if any(punct in words[i] for punct in splits): return ' '.join(words[:i+1]) for i in range(limit_en, min(len(words), search_limit_en)): if any(punct in words[i] for punct in splits): return ' '.join(words[:i+1]) return ' '.join(words[:limit_en]) else:#中文日文 if len(text) <= limit_cj: return text for i in range(limit_cj, -1, -1): # 向前搜索 if text[i] in splits: return text[:i+1] for i in range(limit_cj, min(len(text), search_limit_cj)): # 向后搜索,但不超过search_limit if text[i] in splits: return text[:i+1] return text[:limit_cj] # 如果没有找到标点,或者超过搜索限制,直接裁切到limit def duration(audio_file_path): try: audio_duration = librosa.get_duration(filename=audio_file_path) if not 3 < audio_duration < 10: wprint("The audio length must be between 3~10 seconds/音频时长须在3~10秒之间") return False return True except FileNotFoundError: wprint("Failed to obtain uploaded audio/未找到音频文件") return False def update_model(choice): global gpt_path, sovits_path model_info = models[choice] gpt_path = abs_path(model_info["gpt_weight"]) sovits_path = abs_path(model_info["sovits_weight"]) model_name = choice tone_info = model_info["tones"]["tone1"] tone_sample_path = abs_path(tone_info["sample"]) tprint(f'✅SELECT MODEL:{choice}') # 返回默认tone“tone1” return ( tone_info["example_voice_wav"], tone_info["example_voice_wav_words"], model_info["default_language"], model_info["default_language"], model_name, "tone1" , tone_sample_path ) def update_tone(model_choice, tone_choice): model_info = models[model_choice] tone_info = model_info["tones"][tone_choice] example_voice_wav = abs_path(tone_info["example_voice_wav"]) example_voice_wav_words = tone_info["example_voice_wav_words"] tone_sample_path = abs_path(tone_info["sample"]) return example_voice_wav, example_voice_wav_words,tone_sample_path def transcribe(voice): time1=timer() tprint('⚡Start Clone - transcribe') task="transcribe" if voice is None: wprint("No audio file submitted! Please upload or record an audio file before submitting your request.") R = pipe(voice, batch_size=8, generate_kwargs={"task": task}, return_timestamps=True,return_language=True) text=R['text'] lang=R['chunks'][0]['language'] if lang=='english': language='English' elif lang =='chinese': language='中文' elif lang=='japanese': language = '日本語' time2=timer() tprint(f'transcribe COMPLETE,{round(time2-time1,4)}s') tprint(f'\n 🔣Transcribed audio:\n 🔣Language:{language} \n 🔣Text:{text}' ) return text,language def clone_voice(user_voice,user_text,user_lang): if not duration(user_voice): return None if user_text == '': wprint("Please enter text to generate/请输入生成文字") return None tprint('⚡Start clone') user_text=trim_text(user_text,user_lang) time1=timer() global gpt_path, sovits_path gpt_path = abs_path("pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt") #tprint(f'Model loaded:{gpt_path}') sovits_path = abs_path("pretrained_models/s2G488k.pth") #tprint(f'Model loaded:{sovits_path}') prompt_text, prompt_language = transcribe(user_voice) output_wav = get_tts_wav( user_voice, prompt_text, prompt_language, user_text, user_lang, how_to_cut="Do not split", volume_scale=1.0) time2=timer() tprint(f'🆗CLONE COMPLETE,{round(time2-time1,4)}s') return output_wav from info import models models_by_language = { "English": [], "中文": [], "日本語": [] } for model_name, model_info in models.items(): language = model_info["default_language"] models_by_language[language].append((model_name, model_info)) ##########GRADIO########### with gr.Blocks(theme='Kasien/ali_theme_custom') as app: gr.HTML('''
If you like this space, please click the ❤️ at the top of the page..如喜欢,请点一下页面顶部的❤️
💡This space is based on the innovative text-to-speech generation solution
GPT-SoVITS .
You can visit the repo's github homepage to learn training and inference.
本空间基于新式的文字转语音生成方案 GPT-SoVITS .
你可以前往项目的github主页学习如何推理和训练。
✏️Generating voice is very slow due to using HuggingFace's free CPU in this space. For faster generation,
click the Colab icon below to use this space in Colab, which will significantly improve the speed.
由于本空间使用huggingface的免费CPU进行推理,因此速度很慢,如想快速生成,
请点击下方的Colab图标,前往Colab使用已获得更快的生成速度。
Need 3~10s audio.This involves voice-to-text conversion followed by text-to-voice conversion, so it takes longer time
需要3~10秒语音,这个会涉及语音转文字,之后再转语音,所以耗时比较久