File size: 30,855 Bytes
df5e314
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

# Updated to account for UI changes from https://github.com/rkfg/audiocraft/blob/long/app.py
# also released under the MIT license.

import random
import argparse
from concurrent.futures import ProcessPoolExecutor
import os
import subprocess as sp
from tempfile import NamedTemporaryFile
import time
import warnings
import glob
import re
from pathlib import Path
from PIL import Image

import torch
import gradio as gr
import numpy as np

from audiocraft.data.audio_utils import convert_audio
from audiocraft.data.audio import audio_write
from audiocraft.models import MusicGen
from audiocraft.utils import ui
import subprocess, random, string

MODEL = None  # Last used model
MODELS = None
IS_SHARED_SPACE = "musicgen/MusicGen" in os.environ.get('SPACE_ID', '')
INTERRUPTED = False
UNLOAD_MODEL = False
MOVE_TO_CPU = False
IS_BATCHED = "facebook/MusicGen" in os.environ.get('SPACE_ID', '')
MAX_BATCH_SIZE = 12
BATCHED_DURATION = 15
INTERRUPTING = False
# We have to wrap subprocess call to clean a bit the log when using gr.make_waveform
_old_call = sp.call

def generate_random_string(length):
    characters = string.ascii_letters + string.digits
    return ''.join(random.choice(characters) for _ in range(length))

def resize_video(input_path, output_path, target_width, target_height):
    ffmpeg_cmd = [
        'ffmpeg',
        '-y',
        '-i', input_path,
        '-vf', f'scale={target_width}:{target_height}',
        '-c:a', 'copy',
        output_path
    ]
    subprocess.run(ffmpeg_cmd)

def _call_nostderr(*args, **kwargs):
    # Avoid ffmpeg vomitting on the logs.
    kwargs['stderr'] = sp.DEVNULL
    kwargs['stdout'] = sp.DEVNULL
    _old_call(*args, **kwargs)


sp.call = _call_nostderr
# Preallocating the pool of processes.
pool = ProcessPoolExecutor(4)
pool.__enter__()


def interrupt():
    global INTERRUPTING
    INTERRUPTING = True


def make_waveform(*args, **kwargs):
    # Further remove some warnings.
    be = time.time()
    with warnings.catch_warnings():
        warnings.simplefilter('ignore')
        height = kwargs.pop('height')
        width = kwargs.pop('width')
        if height < 256:
            height = 256
        if width < 256:
            width = 256
        waveform_video = gr.make_waveform(*args, **kwargs)
        out = f"{generate_random_string(12)}.mp4"
        image = kwargs.get('bg_image', None)
        if image is None:
            resize_video(waveform_video, out, 900, 300)
        else:
            resize_video(waveform_video, out, width, height)
        print("Make a video took", time.time() - be)
        return out


def load_model(version='melody'):
    global MODEL, MODELS
    custom_model = None
    base_model = 'medium'
    print("Loading model", version)
    if MODELS is None:
        if version == 'custom':
            MODEL = MusicGen.get_pretrained(base_model)
            MODEL.lm.load_state_dict(torch.load(custom_model))
        else:
            MODEL = MusicGen.get_pretrained(version)
        return
    else:
        t1 = time.monotonic()
        if MODEL is not None:
            MODEL.to('cpu') # move to cache
            print("Previous model moved to CPU in %.2fs" % (time.monotonic() - t1))
            t1 = time.monotonic()
        if version != 'custom' and MODELS.get(version) is None:
            print("Loading model %s from disk" % version)
            result = MusicGen.get_pretrained(version)
            MODELS[version] = result
            print("Model loaded in %.2fs" % (time.monotonic() - t1))
            MODEL = result
            return
        result = MODELS[version].to('cuda')
        print("Cached model loaded in %.2fs" % (time.monotonic() - t1))
        MODEL = result

def normalize_audio(audio_data):
    audio_data = audio_data.astype(np.float32)
    max_value = np.max(np.abs(audio_data))
    audio_data /= max_value
    return audio_data

def _do_predictions(texts, melodies, sample, duration, image, height, width, background, bar1, bar2, progress=False, **gen_kwargs):
    maximum_size = 29.5
    cut_size = 0
    sampleP = None
    if sample is not None:
        globalSR, sampleM = sample[0], sample[1]
        sampleM = normalize_audio(sampleM)
        sampleM = torch.from_numpy(sampleM).t()
        if sampleM.dim() == 1:
            sampleM = sampleM.unsqueeze(0)
        sample_length = sampleM.shape[sampleM.dim() - 1] / globalSR
        if sample_length > maximum_size:
            cut_size = sample_length - maximum_size
            sampleP = sampleM[..., :int(globalSR * cut_size)]
            sampleM = sampleM[..., int(globalSR * cut_size):]
        if sample_length >= duration:
            duration = sample_length + 0.5
    global MODEL
    MODEL.set_generation_params(duration=(duration - cut_size), **gen_kwargs)
    print("new batch", len(texts), texts, [None if m is None else (m[0], m[1].shape) for m in melodies], [None if sample is None else (sample[0], sample[1].shape)])
    be = time.time()
    processed_melodies = []
    target_sr = 32000
    target_ac = 1
    for melody in melodies:
        if melody is None:
            processed_melodies.append(None)
        else:
            sr, melody = melody[0], torch.from_numpy(melody[1]).to(MODEL.device).float().t()
            if melody.dim() == 1:
                melody = melody[None]
            melody = melody[..., :int(sr * duration)]
            melody = convert_audio(melody, sr, target_sr, target_ac)
            processed_melodies.append(melody)
    
    if sample is not None:
        if sampleP is None:
            outputs = MODEL.generate_continuation(
                prompt=sampleM,
                prompt_sample_rate=globalSR,
                descriptions=texts,
                progress=progress,
            )
        else:
            if sampleP.dim() > 1:
                sampleP = convert_audio(sampleP, globalSR, target_sr, target_ac)
            sampleP = sampleP.to(MODEL.device).float().unsqueeze(0)
            outputs = MODEL.generate_continuation(
                prompt=sampleM,
                prompt_sample_rate=globalSR,
                descriptions=texts,
                progress=progress,
            )
            outputs = torch.cat([sampleP, outputs], 2)
            
    elif any(m is not None for m in processed_melodies):
        outputs = MODEL.generate_with_chroma(
            descriptions=texts,
            melody_wavs=processed_melodies,
            melody_sample_rate=target_sr,
            progress=progress,
        )
    else:
        outputs = MODEL.generate(texts, progress=progress)

    outputs = outputs.detach().cpu().float()
    out_files = []
    for output in outputs:
        with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file:
            audio_write(
                file.name, output, MODEL.sample_rate, strategy="loudness",
                loudness_headroom_db=16, loudness_compressor=True, add_suffix=False)
            out_files.append(pool.submit(make_waveform, file.name, bg_image=image, bg_color=background, bars_color=(bar1, bar2), fg_alpha=1.0, bar_count=75, height=height, width=width))
    res = [out_file.result() for out_file in out_files]
    print("batch finished", len(texts), time.time() - be)
    if MOVE_TO_CPU:
        MODEL.to('cpu')
    if UNLOAD_MODEL:
        MODEL = None
    torch.cuda.empty_cache()
    torch.cuda.ipc_collect()
    return res


def predict_batched(texts, melodies):
    max_text_length = 512
    texts = [text[:max_text_length] for text in texts]
    load_model('melody')
    res = _do_predictions(texts, melodies, BATCHED_DURATION)
    return [res]


def predict_full(model, prompt_amount, p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, d0, d1, d2, d3, d4, d5, d6, d7, d8, d9, audio, mode, duration, topk, topp, temperature, cfg_coef, seed, overlap, image, height, width, background, bar1, bar2, progress=gr.Progress()):
    global INTERRUPTING
    INTERRUPTING = False
    if temperature < 0:
        raise gr.Error("Temperature must be >= 0.")
    if topk < 0:
        raise gr.Error("Topk must be non-negative.")
    if topp < 0:
        raise gr.Error("Topp must be non-negative.")

    topk = int(topk)
    if MODEL is None or MODEL.name != model:
        load_model(model)
    else:
        if MOVE_TO_CPU:
            MODEL.to('cuda')

    if seed < 0:
        seed = random.randint(0, 0xffff_ffff_ffff)
    torch.manual_seed(seed)
    predict_full.last_upd = time.monotonic()
    def _progress(generated, to_generate):
        if time.monotonic() - predict_full.last_upd > 1:
            progress((generated, to_generate))
            predict_full.last_upd = time.monotonic()
        if INTERRUPTING:
            raise gr.Error("Interrupted.")
    MODEL.set_custom_progress_callback(_progress)

    melody = None
    sample = None
    if mode == "sample":
        sample = audio
    elif mode == "melody":
        melody = audio
    
    text_cat = [p0, p1, p2, p3, p4, p5, p6, p7, p8, p9]
    drag_cat = [d0, d1, d2, d3, d4, d5, d6, d7, d8, d9]
    texts = []
    ind = 0
    ind2 = 0
    while ind < prompt_amount:
        for ind2 in range(int(drag_cat[ind])):
            texts.append(text_cat[ind])
        ind2 = 0
        ind = ind + 1

    outs = _do_predictions(
        [texts], [melody], sample, duration, image, height, width, background, bar1, bar2, progress=True,
        top_k=topk, top_p=topp, temperature=temperature, cfg_coef=cfg_coef, extend_stride=MODEL.max_duration-overlap)
    return outs[0], seed

max_textboxes = 10

def get_available_models():
    return sorted([re.sub('.pt$', '', item.name) for item in list(Path('models/').glob('*')) if item.name.endswith('.pt')])

def ui_full(launch_kwargs):
    with gr.Blocks(title='MusicGen+') as interface:
        gr.Markdown(
            """
            # MusicGen+ V1.2.3 (HuggingFace Version)

            Thanks to: facebookresearch, Camenduru, rkfg and GrandaddyShmax
            """
        )
        with gr.Row():
            with gr.Column():
                with gr.Tab("Generation"):
                    with gr.Row():
                        s = gr.Slider(1, max_textboxes, value=1, step=1, label="Prompt Segments:")
                    with gr.Column():
                        textboxes = []
                        prompts = []
                        repeats = []
                        with gr.Row():
                            text0 = gr.Text(label="Input Text", interactive=True, scale=3)
                            prompts.append(text0)
                            drag0 = gr.Number(label="Repeat", value=1, interactive=True, scale=1)
                            repeats.append(drag0)
                        for i in range(max_textboxes):
                            with gr.Row(visible=False) as t:
                                text = gr.Text(label="Input Text", interactive=True, scale=3)
                                repeat = gr.Number(label="Repeat", minimum=1, value=1, interactive=True, scale=1)
                            textboxes.append(t)
                            prompts.append(text)
                            repeats.append(repeat)
                    with gr.Row():
                        mode = gr.Radio(["melody", "sample"], label="Input Audio Mode", value="sample", interactive=True)
                        audio = gr.Audio(source="upload", type="numpy", label="Input Audio (optional)", interactive=True)
                    with gr.Row():
                        submit = gr.Button("Generate", variant="primary")
                        # Adapted from https://github.com/rkfg/audiocraft/blob/long/app.py, MIT license.
                        _ = gr.Button("Interrupt").click(fn=interrupt, queue=False)
                    with gr.Row():
                        duration = gr.Slider(minimum=1, maximum=300, value=10, step=1, label="Duration", interactive=True)
                    with gr.Row():
                        overlap = gr.Slider(minimum=1, maximum=29, value=12, step=1, label="Overlap", interactive=True)
                    with gr.Row():
                        seed = gr.Number(label="Seed", value=-1, precision=0, interactive=True)
                        gr.Button('\U0001f3b2\ufe0f').style(full_width=False).click(fn=lambda: -1, outputs=[seed], queue=False)
                        reuse_seed = gr.Button('\u267b\ufe0f').style(full_width=False)
                with gr.Tab("Customization"):
                    with gr.Row():
                        with gr.Column():
                            background = gr.ColorPicker(value="#22A699", label="background color", interactive=True, scale=0)
                            bar1 = gr.ColorPicker(value="#F2BE22", label="bar color start", interactive=True, scale=0)
                            bar2 = gr.ColorPicker(value="#F29727", label="bar color end", interactive=True, scale=0)
                        with gr.Column():
                            image = gr.Image(label="Background Image", type="filepath", interactive=True, scale=4)
                            with gr.Row():
                                height = gr.Number(label="Height", value=512, interactive=True)
                                width = gr.Number(label="Width", value=768, interactive=True)
                with gr.Tab("Settings"):
                    with gr.Row():
                        model = gr.Radio(["melody", "small", "medium", "large"], label="Model", value="melody", interactive=True, scale=1)
                    with gr.Row():
                        topk = gr.Number(label="Top-k", value=250, interactive=True)
                        topp = gr.Number(label="Top-p", value=0, interactive=True)
                        temperature = gr.Number(label="Temperature", value=1.0, interactive=True)
                        cfg_coef = gr.Number(label="Classifier Free Guidance", value=5.0, interactive=True)
            with gr.Column() as c:
                with gr.Tab("Output"):
                    output = gr.Video(label="Generated Music", scale=0)
                    seed_used = gr.Number(label='Seed used', value=-1, interactive=False)
                with gr.Tab("Wiki"):
                    gr.Markdown(
                        """
                        ### Generation Tab:

                        #### Multi-Prompt: 
                        
                        This feature allows you to control the music, adding variation to different time segments.  
                        You have up to 10 prompt segments. the first prompt will always be 30s long  
                        the other prompts will be [30s - overlap].  
                        for example if the overlap is 10s, each prompt segment will be 20s.

                        - **[Prompt Segments (number)]:**  
                        Amount of unique prompt to generate throughout the music generation.

                        - **[Prompt/Input Text (prompt)]:**  
                        Here describe the music you wish the model to generate.

                        - **[Repeat (number)]:**  
                        Write how many times this prompt will repeat (instead of wasting another prompt segment on the same prompt).

                        - **[Input Audio Mode (selection)]:**  
                        `Melody` mode only works with the melody model: it conditions the music generation to reference the melody  
                        `Sample` mode works with any model: it gives a music sample to the model to generate its continuation.

                        - **[Input Audio (audio file)]:**  
                        Input here the audio you wish to use with "melody" or "sample" mode.

                        - **[Generate (button)]:**  
                        Generates the music with the given settings and prompts.

                        - **[Interrupt (button)]:**  
                        Stops the music generation as soon as it can, providing an incomplete output.

                        - **[Duration (number)]:**  
                        How long you want the generated music to be (in seconds).

                        - **[Overlap (number)]:**  
                        How much each new segment will reference the previous segment (in seconds).  
                        For example, if you choose 20s: Each new segment after the first one will reference the previous segment 20s  
                        and will generate only 10s of new music. The model can only process 30s of music.

                        - **[Seed (number)]:**  
                        Your generated music id. If you wish to generate the exact same music,  
                        place the exact seed with the exact prompts  
                        (This way you can also extend specific song that was generated short).

                        - **[Random Seed (button)]:**  
                        Gives "-1" as a seed, which counts as a random seed.

                        - **[Copy Previous Seed (button)]:**  
                        Copies the seed from the output seed (if you don't feel like doing it manualy).

                        ---

                        ### Customization Tab:

                        - **[Background Color (color)]:**  
                        Works only if you don't upload image. Color of the background of the waveform.

                        - **[Bar Color Start (color)]:**  
                        First color of the waveform bars.

                        - **[Bar Color End (color)]:**  
                        Second color of the waveform bars.

                        - **[Background Image (image)]:**  
                        Background image that you wish to be attached to the generated video along with the waveform.

                        - **[Height and Width (numbers)]:**  
                        Output video resolution, only works with image.  
                        (minimum height and width is 256).
                        
                        ---

                        ### Settings Tab:

                        - **[Model (selection)]:**  
                        Here you can choose which model you wish to use:  
                        `melody` model is based on the medium model with a unique feature that lets you use melody conditioning  
                        `small` model is trained on 300M parameters  
                        `medium` model is trained on 1.5B parameters  
                        `large` model is trained on 3.3B parameters.

                        - **[Top-k (number)]:**  
                        is a parameter used in text generation models, including music generation models. It determines the number of most likely next tokens to consider at each step of the generation process. The model ranks all possible tokens based on their predicted probabilities, and then selects the top-k tokens from the ranked list. The model then samples from this reduced set of tokens to determine the next token in the generated sequence. A smaller value of k results in a more focused and deterministic output, while a larger value of k allows for more diversity in the generated music.

                        - **[Top-p (number)]:**  
                        also known as nucleus sampling or probabilistic sampling, is another method used for token selection during text generation. Instead of specifying a fixed number like top-k, top-p considers the cumulative probability distribution of the ranked tokens. It selects the smallest possible set of tokens whose cumulative probability exceeds a certain threshold (usually denoted as p). The model then samples from this set to choose the next token. This approach ensures that the generated output maintains a balance between diversity and coherence, as it allows for a varying number of tokens to be considered based on their probabilities.
                        
                        - **[Temperature (number)]:**  
                        is a parameter that controls the randomness of the generated output. It is applied during the sampling process, where a higher temperature value results in more random and diverse outputs, while a lower temperature value leads to more deterministic and focused outputs. In the context of music generation, a higher temperature can introduce more variability and creativity into the generated music, but it may also lead to less coherent or structured compositions. On the other hand, a lower temperature can produce more repetitive and predictable music.

                        - **[Classifier Free Guidance (number)]:**  
                        refers to a technique used in some music generation models where a separate classifier network is trained to provide guidance or control over the generated music. This classifier is trained on labeled data to recognize specific musical characteristics or styles. During the generation process, the output of the generator model is evaluated by the classifier, and the generator is encouraged to produce music that aligns with the desired characteristics or style. This approach allows for more fine-grained control over the generated music, enabling users to specify certain attributes they want the model to capture.
                        """
                    )
                with gr.Tab("Changelog"):
                    gr.Markdown(
                        """
                        ## Changelog:

                        ### V1.2.3

                        - Added option to change video size to fit the image you upload



                        ### V1.2.2

                        - Added Wiki, Changelog and About tabs



                        ### V1.2.1

                        - Added tabs and organized the entire interface

                        - Added option to attach image to the output video

                        - Added option to load fine-tuned models (Not on HuggingFace Version)



                        ### V1.2.0

                        - Added Multi-Prompt



                        ### V1.1.3

                        - Added customization options for generated waveform



                        ### V1.1.2

                        - Removed sample length limit: now you can input audio of any length as music sample



                        ### V1.1.1

                        - Improved music sample audio quality when using music continuation



                        ### V1.1.0

                        - Rebuilt the repo on top of the latest structure of the main MusicGen repo
                        
                        - Improved Music continuation feature



                        ### V1.0.0 - Stable Version

                        - Added Music continuation
                        """
                    )
                with gr.Tab("About"):
                    gr.Markdown(
                        """
                        This is your private demo for [MusicGen](https://github.com/facebookresearch/audiocraft), a simple and controllable model for music generation
                        presented at: ["Simple and Controllable Music Generation"](https://huggingface.co/papers/2306.05284)
                        
                        ## MusicGen+ is an extended version of the original MusicGen by facebookresearch. 
                        
                        ### Repo: https://github.com/GrandaddyShmax/audiocraft_plus/tree/plus

                        ---
                        
                        ### This project was possible thanks to:

                        #### GrandaddyShmax - https://github.com/GrandaddyShmax

                        #### Camenduru - https://github.com/camenduru

                        #### rkfg - https://github.com/rkfg

                        #### oobabooga - https://github.com/oobabooga
                        """
                    )
        reuse_seed.click(fn=lambda x: x, inputs=[seed_used], outputs=[seed], queue=False)
        submit.click(predict_full, inputs=[model, s, prompts[0], prompts[1], prompts[2], prompts[3], prompts[4], prompts[5], prompts[6], prompts[7], prompts[8], prompts[9], repeats[0], repeats[1], repeats[2], repeats[3], repeats[4], repeats[5], repeats[6], repeats[7], repeats[8], repeats[9], audio, mode, duration, topk, topp, temperature, cfg_coef, seed, overlap, image, height, width, background, bar1, bar2], outputs=[output, seed_used])

        def variable_outputs(k):
            k = int(k) - 1
            return [gr.Textbox.update(visible=True)]*k + [gr.Textbox.update(visible=False)]*(max_textboxes-k)
        def get_size(image):
            if image is not None:
                img = Image.open(image)
                img_height = img.height
                img_width = img.width
                if (img_height%2) != 0:
                    img_height = img_height + 1
                if (img_width%2) != 0:
                    img_width = img_width + 1
                return img_height, img_width
            else:
                return 512, 768

        image.change(get_size, image, outputs=[height, width])
        s.change(variable_outputs, s, textboxes)
        gr.Examples(
            fn=predict_full,
            examples=[
                [
                    "An 80s driving pop song with heavy drums and synth pads in the background",
                    "./assets/bach.mp3",
                    "melody"
                ],
                [
                    "A cheerful country song with acoustic guitars",
                    "./assets/bolero_ravel.mp3",
                    "melody"
                ],
                [
                    "90s rock song with electric guitar and heavy drums",
                    None,
                    "medium"
                ],
                [
                    "a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions",
                    "./assets/bach.mp3",
                    "melody"
                ],
                [
                    "lofi slow bpm electro chill with organic samples",
                    None,
                    "medium",
                ],
            ],
            inputs=[text0, audio, model],
            outputs=[output]
        )

        interface.queue().launch(**launch_kwargs)


def ui_batched(launch_kwargs):
    with gr.Blocks() as demo:
        gr.Markdown(
            """
            # MusicGen

            This is the demo for [MusicGen](https://github.com/facebookresearch/audiocraft), a simple and controllable model for music generation
            presented at: ["Simple and Controllable Music Generation"](https://huggingface.co/papers/2306.05284).
            <br/>
            <a href="https://huggingface.co/spaces/facebook/MusicGen?duplicate=true" style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank">
            <img style="margin-bottom: 0em;display: inline;margin-top: -.25em;" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
            for longer sequences, more control and no queue.</p>
            """
        )
        with gr.Row():
            with gr.Column():
                with gr.Row():
                    text = gr.Text(label="Describe your music", lines=2, interactive=True)
                    melody = gr.Audio(source="upload", type="numpy", label="Condition on a melody (optional)", interactive=True)
                with gr.Row():
                    submit = gr.Button("Generate")
            with gr.Column():
                output = gr.Video(label="Generated Music")
        submit.click(predict_batched, inputs=[text, melody], outputs=[output], batch=True, max_batch_size=MAX_BATCH_SIZE)
        gr.Examples(
            fn=predict_batched,
            examples=[
                [
                    "An 80s driving pop song with heavy drums and synth pads in the background",
                    "./assets/bach.mp3",
                ],
                [
                    "A cheerful country song with acoustic guitars",
                    "./assets/bolero_ravel.mp3",
                ],
                [
                    "90s rock song with electric guitar and heavy drums",
                    None,
                ],
                [
                    "a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions bpm: 130",
                    "./assets/bach.mp3",
                ],
                [
                    "lofi slow bpm electro chill with organic samples",
                    None,
                ],
            ],
            inputs=[text, melody],
            outputs=[output]
        )

        demo.queue(max_size=8 * 4).launch(**launch_kwargs)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        '--listen',
        type=str,
        default='0.0.0.0' if 'SPACE_ID' in os.environ else '127.0.0.1',
        help='IP to listen on for connections to Gradio',
    )
    parser.add_argument(
        '--username', type=str, default='', help='Username for authentication'
    )
    parser.add_argument(
        '--password', type=str, default='', help='Password for authentication'
    )
    parser.add_argument(
        '--server_port',
        type=int,
        default=0,
        help='Port to run the server listener on',
    )
    parser.add_argument(
        '--inbrowser', action='store_true', help='Open in browser'
    )
    parser.add_argument(
        '--share', action='store_true', help='Share the gradio UI'
    )
    parser.add_argument(
        '--unload_model', action='store_true', help='Unload the model after every generation to save GPU memory'
    )

    parser.add_argument(
        '--unload_to_cpu', action='store_true', help='Move the model to main RAM after every generation to save GPU memory but reload faster than after full unload (see above)'
    )

    parser.add_argument(
        '--cache', action='store_true', help='Cache models in RAM to quickly switch between them'
    )

    args = parser.parse_args()
    UNLOAD_MODEL = args.unload_model
    MOVE_TO_CPU = args.unload_to_cpu
    if args.cache:
        MODELS = {}

    launch_kwargs = {}
    launch_kwargs['server_name'] = args.listen

    if args.username and args.password:
        launch_kwargs['auth'] = (args.username, args.password)
    if args.server_port:
        launch_kwargs['server_port'] = args.server_port
    if args.inbrowser:
        launch_kwargs['inbrowser'] = args.inbrowser
    if args.share:
        launch_kwargs['share'] = args.share

    # Show the interface
    if IS_BATCHED:
        ui_batched(launch_kwargs)
    else:
        ui_full(launch_kwargs)