Spaces:
Runtime error
Runtime error
Hjgugugjhuhjggg
commited on
Commit
•
c1a1630
1
Parent(s):
9bc4091
Update app.py
Browse files
app.py
CHANGED
@@ -15,342 +15,6 @@ from threading import Thread
|
|
15 |
from time import sleep
|
16 |
from fastapi.staticfiles import StaticFiles
|
17 |
import gradio as gr
|
18 |
-
|
19 |
-
load_dotenv()
|
20 |
-
|
21 |
-
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
|
22 |
-
|
23 |
-
global_data = {
|
24 |
-
'models': {},
|
25 |
-
}
|
26 |
-
|
27 |
-
model_configs = [
|
28 |
-
{"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf", "name": "GPT-2 XL"},
|
29 |
-
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-instruct-q2_k.gguf", "name": "Meta Llama 3.1-8B Instruct"},
|
30 |
-
{"repo_id": "Ffftdtd5dtft/gemma-2-9b-it-Q2_K-GGUF", "filename": "gemma-2-9b-it-q2_k.gguf", "name": "Gemma 2-9B IT"},
|
31 |
-
{"repo_id": "Ffftdtd5dtft/gemma-2-27b-Q2_K-GGUF", "filename": "gemma-2-27b-q2_k.gguf", "name": "Gemma 2-27B"},
|
32 |
-
{"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-Q2_K-GGUF", "filename": "phi-3-mini-128k-instruct-q2_k.gguf", "name": "Phi-3 Mini 128K Instruct"},
|
33 |
-
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-q2_k.gguf", "name": "Meta Llama 3.1-8B"},
|
34 |
-
{"repo_id": "Ffftdtd5dtft/Qwen2-7B-Instruct-Q2_K-GGUF", "filename": "qwen2-7b-instruct-q2_k.gguf", "name": "Qwen2 7B Instruct"},
|
35 |
-
{"repo_id": "Ffftdtd5dtft/starcoder2-3b-Q2_K-GGUF", "filename": "starcoder2-3b-q2_k.gguf", "name": "Starcoder2 3B"},
|
36 |
-
{"repo_id": "Ffftdtd5dtft/Qwen2-1.5B-Instruct-Q2_K-GGUF", "filename": "qwen2-1.5b-instruct-q2_k.gguf", "name": "Qwen2 1.5B Instruct"},
|
37 |
-
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-70B-Q2_K-GGUF", "filename": "meta-llama-3.1-70b-q2_k.gguf", "name": "Meta Llama 3.1-70B"},
|
38 |
-
{"repo_id": "Ffftdtd5dtft/Mistral-Nemo-Instruct-2407-Q2_K-GGUF", "filename": "mistral-nemo-instruct-2407-q2_k.gguf", "name": "Mistral Nemo Instruct 2407"},
|
39 |
-
{"repo_id": "Ffftdtd5dtft/Hermes-3-Llama-3.1-8B-IQ1_S-GGUF", "filename": "hermes-3-llama-3.1-8b-iq1_s-imat.gguf", "name": "Hermes 3 Llama 3.1-8B"},
|
40 |
-
{"repo_id": "Ffftdtd5dtft/Phi-3.5-mini-instruct-Q2_K-GGUF", "filename": "phi-3.5-mini-instruct-q2_k.gguf", "name": "Phi 3.5 Mini Instruct"},
|
41 |
-
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-70B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-70b-instruct-q2_k.gguf", "name": "Meta Llama 3.1-70B Instruct"},
|
42 |
-
{"repo_id": "Ffftdtd5dtft/codegemma-2b-IQ1_S-GGUF", "filename": "codegemma-2b-iq1_s-imat.gguf", "name": "Codegemma 2B"},
|
43 |
-
{"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-IQ2_XXS-GGUF", "filename": "phi-3-mini-128k-instruct-iq2_xxs-imat.gguf", "name": "Phi 3 Mini 128K Instruct XXS"},
|
44 |
-
{"repo_id": "Ffftdtd5dtft/TinyLlama-1.1B-Chat-v1.0-IQ1_S-GGUF", "filename": "tinyllama-1.1b-chat-v1.0-iq1_s-imat.gguf", "name": "TinyLlama 1.1B Chat"},
|
45 |
-
{"repo_id": "Ffftdtd5dtft/Mistral-NeMo-Minitron-8B-Base-IQ1_S-GGUF", "filename": "mistral-nemo-minitron-8b-base-iq1_s-imat.gguf", "name": "Mistral NeMo Minitron 8B Base"},
|
46 |
-
{"repo_id": "Ffftdtd5dtft/Mistral-Nemo-Instruct-2407-Q2_K-GGUF", "filename": "mistral-nemo-instruct-2407-q2_k.gguf", "name": "Mistral Nemo Instruct 2407"}
|
47 |
-
]
|
48 |
-
|
49 |
-
class ModelManager:
|
50 |
-
def __init__(self):
|
51 |
-
self.models = {}
|
52 |
-
|
53 |
-
def load_model(self, model_config):
|
54 |
-
if model_config['name'] not in self.models:
|
55 |
-
try:
|
56 |
-
print(f"Loading model {model_config['name']}...")
|
57 |
-
self.models[model_config['name']] = Llama.from_pretrained(
|
58 |
-
repo_id=model_config['repo_id'],
|
59 |
-
filename=model_config['filename'],
|
60 |
-
use_auth_token=HUGGINGFACE_TOKEN
|
61 |
-
)
|
62 |
-
print(f"Model {model_config['name']} loaded successfully.")
|
63 |
-
except Exception as e:
|
64 |
-
print(f"Error loading model {model_config['name']}: {e}")
|
65 |
-
|
66 |
-
def load_all_models(self):
|
67 |
-
with ThreadPoolExecutor() as executor:
|
68 |
-
for config in model_configs:
|
69 |
-
executor.submit(self.load_model, config)
|
70 |
-
return self.models
|
71 |
-
|
72 |
-
model_manager = ModelManager()
|
73 |
-
global_data['models'] = model_manager.load_all_models()
|
74 |
-
|
75 |
-
class ChatRequest(BaseModel):
|
76 |
-
message: str
|
77 |
-
|
78 |
-
def normalize_input(input_text):
|
79 |
-
return input_text.strip()
|
80 |
-
|
81 |
-
def remove_duplicates(text):
|
82 |
-
text = re.sub(r'(Hello there, how are you\? \[/INST\]){2,}', 'Hello there, how are you? [/INST]', text)
|
83 |
-
text = re.sub(r'(How are you\? \[/INST\]){2,}', 'How are you? [/INST]', text)
|
84 |
-
text = text.replace('[/INST]', '')
|
85 |
-
lines = text.split('\n')
|
86 |
-
unique_lines = []
|
87 |
-
seen_lines = set()
|
88 |
-
for line in lines:
|
89 |
-
if line not in seen_lines:
|
90 |
-
unique_lines.append(line)
|
91 |
-
seen_lines.add(line)
|
92 |
-
return '\n'.join(unique_lines)
|
93 |
-
|
94 |
-
PROXY_URL = "https://uhhy-fsfsfs.hf.space/valid"
|
95 |
-
|
96 |
-
def get_random_proxy():
|
97 |
-
try:
|
98 |
-
response = requests.get(PROXY_URL)
|
99 |
-
proxies = response.text.splitlines()
|
100 |
-
return random.choice(proxies)
|
101 |
-
except Exception as e:
|
102 |
-
print(f"Error fetching proxy: {e}")
|
103 |
-
return None
|
104 |
-
|
105 |
-
fake = Faker()
|
106 |
-
|
107 |
-
def generate_fake_ip():
|
108 |
-
return fake.ipv4()
|
109 |
-
|
110 |
-
def get_random_user_agent():
|
111 |
-
user_agents = [
|
112 |
-
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
|
113 |
-
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
|
114 |
-
"Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
|
115 |
-
"Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:89.0) Gecko/20100101 Firefox/89.0",
|
116 |
-
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7; rv:89.0) Gecko/20100101 Firefox/89.0",
|
117 |
-
"Mozilla/5.0 (X11; Linux x86_64; rv:89.0) Gecko/20100101 Firefox/89.0",
|
118 |
-
"Mozilla/5.0 (iPhone; CPU iPhone OS 14_6 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0.3 Mobile/15E148 Safari/604.1",
|
119 |
-
"Mozilla/5.0 (iPad; CPU OS 14_6 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0.3 Mobile/15E148 Safari/604.1",
|
120 |
-
"Mozilla/5.0 (Android 11; Mobile; rv:89.0) Gecko/89.0 Firefox/89.0"
|
121 |
-
]
|
122 |
-
return random.choice(user_agents)
|
123 |
-
|
124 |
-
@spaces.GPU(
|
125 |
-
queue=False,
|
126 |
-
allow_gpu_memory=True,
|
127 |
-
timeout=0,
|
128 |
-
duration=0,
|
129 |
-
gpu_type='Tesla V100',
|
130 |
-
gpu_count=2,
|
131 |
-
gpu_memory_limit='32GB',
|
132 |
-
cpu_limit=4,
|
133 |
-
memory_limit='64GB',
|
134 |
-
retry=True,
|
135 |
-
retry_delay=30,
|
136 |
-
priority='high',
|
137 |
-
disk_limit='100GB',
|
138 |
-
scratch_space='/mnt/scratch',
|
139 |
-
network_bandwidth_limit='200Mbps',
|
140 |
-
internet_access=True,
|
141 |
-
precision='float16',
|
142 |
-
batch_size=128,
|
143 |
-
num_threads=16,
|
144 |
-
logging_level='DEBUG',
|
145 |
-
log_to_file=True,
|
146 |
-
alert_on_failure=True,
|
147 |
-
data_encryption=True,
|
148 |
-
env_variables={'CUDA_VISIBLE_DEVICES': '0'},
|
149 |
-
environment_type='conda',
|
150 |
-
enable_checkpointing=True,
|
151 |
-
resource_limits={'gpu': 'Tesla V100', 'cpu': 8, 'memory': '128GB'},
|
152 |
-
hyperparameter_tuning=True,
|
153 |
-
prefetch_data=True,
|
154 |
-
persistent_storage=True,
|
155 |
-
auto_scaling=True,
|
156 |
-
security_level='high',
|
157 |
-
task_priority='urgent',
|
158 |
-
retries_on_timeout=True,
|
159 |
-
file_system='nfs',
|
160 |
-
custom_metrics={'throughput': '300GB/s', 'latency': '10ms'},
|
161 |
-
gpu_utilization_logging=True,
|
162 |
-
job_isolation='container',
|
163 |
-
failure_strategy='retry',
|
164 |
-
gpu_memory_overcommit=True,
|
165 |
-
cpu_overcommit=True,
|
166 |
-
memory_overcommit=True,
|
167 |
-
enable_optimizations=True,
|
168 |
-
multi_gpu_strategy='data_parallel',
|
169 |
-
model_parallelism=True,
|
170 |
-
quantization='dynamic',
|
171 |
-
pruning='structured',
|
172 |
-
tensor_parallelism=True,
|
173 |
-
mixed_precision_training=True,
|
174 |
-
layerwise_lr_decay=True,
|
175 |
-
warmup_steps=500,
|
176 |
-
learning_rate_scheduler='cosine_annealing',
|
177 |
-
dropout_rate=0.3,
|
178 |
-
weight_decay=0.01,
|
179 |
-
gradient_accumulation_steps=8,
|
180 |
-
mixed_precision_loss_scale=128,
|
181 |
-
tensorboard_logging=True,
|
182 |
-
hyperparameter_search_space={'learning_rate': [1e-5, 1e-3], 'batch_size': [64, 256]},
|
183 |
-
early_stopping=True,
|
184 |
-
early_stopping_patience=10,
|
185 |
-
input_data_pipeline='tf.data',
|
186 |
-
batch_normalization=True,
|
187 |
-
activation_function='relu',
|
188 |
-
optimizer='adam',
|
189 |
-
gradient_clipping=1.0,
|
190 |
-
checkpoint_freq=10,
|
191 |
-
experiment_name='deep_model_training',
|
192 |
-
experiment_tags=['nlp', 'deep_learning'],
|
193 |
-
adaptive_lr=True,
|
194 |
-
learning_rate_max=0.01,
|
195 |
-
learning_rate_min=1e-6,
|
196 |
-
max_steps=100000,
|
197 |
-
tolerance=0.01,
|
198 |
-
logging_frequency=10,
|
199 |
-
profile_gpu=True,
|
200 |
-
profile_cpu=True,
|
201 |
-
debug_mode=True,
|
202 |
-
save_best_model=True,
|
203 |
-
evaluation_metric='accuracy',
|
204 |
-
job_preemption='enabled',
|
205 |
-
preemptible_resources=True,
|
206 |
-
grace_period=60,
|
207 |
-
resource_scheduling='fifo',
|
208 |
-
hyperparameter_optimization_algorithm='bayesian',
|
209 |
-
distributed_training=True,
|
210 |
-
multi_node_training=True,
|
211 |
-
max_retries=5,
|
212 |
-
log_level='INFO',
|
213 |
-
secure_socket_layer=True,
|
214 |
-
data_sharding=True,
|
215 |
-
distributed_optimizer='horovod',
|
216 |
-
mixed_precision_support=True,
|
217 |
-
fault_tolerance=True,
|
218 |
-
external_gpu_resources=True,
|
219 |
-
disk_cache=True,
|
220 |
-
backup_enabled=True,
|
221 |
-
backup_frequency='daily',
|
222 |
-
task_grouping='dynamic',
|
223 |
-
instance_type='high_memory',
|
224 |
-
instance_count=3,
|
225 |
-
task_runtime='hours',
|
226 |
-
adaptive_memory_allocation=True,
|
227 |
-
model_versioning=True,
|
228 |
-
multi_model_support=True,
|
229 |
-
batch_optimization=True,
|
230 |
-
memory_prefetch=True,
|
231 |
-
data_prefetch_threads=16,
|
232 |
-
network_optimization=True,
|
233 |
-
model_parallelism_strategy='pipeline',
|
234 |
-
verbose_logging=True,
|
235 |
-
lock_on_failure=True,
|
236 |
-
data_compression=True,
|
237 |
-
inference_mode='batch',
|
238 |
-
distributed_cache_enabled=True,
|
239 |
-
dynamic_batching=True,
|
240 |
-
model_deployment=True,
|
241 |
-
latency_optimization=True,
|
242 |
-
multi_region_deployment=True,
|
243 |
-
multi_user_support=True,
|
244 |
-
job_scheduling='auto',
|
245 |
-
max_job_count=100,
|
246 |
-
suspend_on_idle=True,
|
247 |
-
hyperparameter_search_algorithm='random',
|
248 |
-
job_priority_scaling=True,
|
249 |
-
quantum_computing_support=True,
|
250 |
-
dynamic_resource_scaling=True,
|
251 |
-
runtime_optimization=True,
|
252 |
-
checkpoint_interval='30min',
|
253 |
-
max_gpu_temperature=80,
|
254 |
-
scale_on_gpu_utilization=True,
|
255 |
-
worker_threads=8
|
256 |
-
)
|
257 |
-
def generate_model_response(model, inputs):
|
258 |
-
print(f"Generating response for model: {model}")
|
259 |
-
response = model(inputs)
|
260 |
-
print(f"Response from {model}: {response}")
|
261 |
-
return remove_duplicates(response['choices'][0]['text'])
|
262 |
-
|
263 |
-
def remove_repetitive_responses(responses):
|
264 |
-
unique_responses = {}
|
265 |
-
for response in responses:
|
266 |
-
if response not in unique_responses:
|
267 |
-
unique_responses[response] = response
|
268 |
-
return unique_responses
|
269 |
-
|
270 |
-
async def process_message(message):
|
271 |
-
inputs = normalize_input(message)
|
272 |
-
with ThreadPoolExecutor() as executor:
|
273 |
-
futures = [
|
274 |
-
executor.submit(generate_model_response, model, inputs)
|
275 |
-
for model in global_data['models'].values()
|
276 |
-
]
|
277 |
-
responses = []
|
278 |
-
for future in as_completed(futures):
|
279 |
-
try:
|
280 |
-
response = future.result()
|
281 |
-
responses.append(response)
|
282 |
-
except Exception as e:
|
283 |
-
print(f"Error with model: {e}")
|
284 |
-
responses.append("Error generating response. Please try again later.")
|
285 |
-
|
286 |
-
unique_responses = remove_repetitive_responses(responses)
|
287 |
-
formatted_response = ""
|
288 |
-
for model, response in unique_responses.items():
|
289 |
-
formatted_response += f"**{model}:**\n{response}\n\n"
|
290 |
-
|
291 |
-
curl_command = f"""
|
292 |
-
curl -X POST -H "Content-Type: application/json" \\
|
293 |
-
-d '{{"message": "{message}"}}' \\
|
294 |
-
http://localhost:7860/generate
|
295 |
-
"""
|
296 |
-
return formatted_response, curl_command
|
297 |
-
|
298 |
-
app = FastAPI()
|
299 |
-
|
300 |
-
app.add_middleware(
|
301 |
-
CORSMiddleware,
|
302 |
-
allow_origins=["*"],
|
303 |
-
allow_credentials=True,
|
304 |
-
allow_methods=["*"],
|
305 |
-
allow_headers=["*"],
|
306 |
-
)
|
307 |
-
|
308 |
-
app.mount("/", StaticFiles(directory="public", html=True), name="static")
|
309 |
-
|
310 |
-
@app.post("/generate")
|
311 |
-
async def generate_response(request: Request):
|
312 |
-
data = await request.json()
|
313 |
-
message = data.get("message")
|
314 |
-
if not message:
|
315 |
-
return JSONResponse(status_code=400, content={"error": "Message is required."})
|
316 |
-
|
317 |
-
response, _ = await process_message(message)
|
318 |
-
return JSONResponse(content={"response": response})
|
319 |
-
|
320 |
-
iface = gr.Interface(
|
321 |
-
fn=process_message,
|
322 |
-
inputs=gr.Textbox(lines=2, placeholder="Enter your message here..."),
|
323 |
-
outputs=[gr.Markdown(), gr.Textbox(label="cURL command")],
|
324 |
-
title="Multi-Model LLM API",
|
325 |
-
description="Enter a message and get responses from multiple LLMs.",
|
326 |
-
)
|
327 |
-
|
328 |
-
def anonymize_ip():
|
329 |
-
while True:
|
330 |
-
sleep(0)
|
331 |
-
os.environ['HTTP_X_FORWARDED_FOR'] = generate_fake_ip()
|
332 |
-
os.environ['REMOTE_ADDR'] = generate_fake_ip()
|
333 |
-
|
334 |
-
Thread(target=anonymize_ip).start()
|
335 |
-
|
336 |
-
if __name__ == "__main__":
|
337 |
-
iface.launch(share=True) from pydantic import BaseModel
|
338 |
-
from llama_cpp import Llama
|
339 |
-
from concurrent.futures import ThreadPoolExecutor, as_completed
|
340 |
-
import re
|
341 |
-
import os
|
342 |
-
from dotenv import load_dotenv
|
343 |
-
import spaces
|
344 |
-
import requests
|
345 |
-
import random
|
346 |
-
from faker import Faker
|
347 |
-
from fastapi import FastAPI, Request
|
348 |
-
from fastapi.responses import JSONResponse
|
349 |
-
from fastapi.middleware.cors import CORSMiddleware
|
350 |
-
from threading import Thread
|
351 |
-
from time import sleep
|
352 |
-
from fastapi.staticfiles import StaticFiles
|
353 |
-
import gradio as gr
|
354 |
from typing import Dict, Any, Tuple
|
355 |
from urllib.parse import urlparse
|
356 |
|
|
|
15 |
from time import sleep
|
16 |
from fastapi.staticfiles import StaticFiles
|
17 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
from typing import Dict, Any, Tuple
|
19 |
from urllib.parse import urlparse
|
20 |
|