Spaces:
Running
Running
Hjgugugjhuhjggg
commited on
Commit
•
7f7bd2a
1
Parent(s):
dc7b924
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import random
|
3 |
+
import nltk
|
4 |
+
import numpy
|
5 |
+
from nltk.stem import LancasterStemmer
|
6 |
+
from tensorflow.python.keras.layers import Dense
|
7 |
+
from tensorflow.python.keras.models import Sequential
|
8 |
+
from flask import Flask, request, jsonify
|
9 |
+
|
10 |
+
app = Flask(__name__)
|
11 |
+
|
12 |
+
nltk.download('all')
|
13 |
+
stemmer = LancasterStemmer()
|
14 |
+
|
15 |
+
intents = []
|
16 |
+
|
17 |
+
def generar_pregunta():
|
18 |
+
temas = ["hola", "buenos días", "buenas tardes", "adiós", "hasta luego"]
|
19 |
+
plantillas = [
|
20 |
+
'¿Qué es {}?',
|
21 |
+
'¿Cuál es el significado de {}?',
|
22 |
+
'¿Puedes describir {}?',
|
23 |
+
'¿Qué relación hay entre {} y {}?',
|
24 |
+
'¿Cuál es la diferencia entre {} y {}?',
|
25 |
+
]
|
26 |
+
|
27 |
+
tema = random.choice(temas)
|
28 |
+
plantilla = random.choice(plantillas)
|
29 |
+
|
30 |
+
if '{}' in plantilla:
|
31 |
+
palabra1 = random.choice(temas)
|
32 |
+
palabra2 = random.choice(temas)
|
33 |
+
pregunta = plantilla.format(tema, palabra1, palabra2)
|
34 |
+
else:
|
35 |
+
pregunta = plantilla.format(tema)
|
36 |
+
|
37 |
+
return pregunta
|
38 |
+
|
39 |
+
def entrenar_modelo():
|
40 |
+
global intents
|
41 |
+
words = []
|
42 |
+
labels = []
|
43 |
+
docs_x = []
|
44 |
+
docs_y = []
|
45 |
+
|
46 |
+
for intent in intents:
|
47 |
+
for pattern in intent["patterns"]:
|
48 |
+
wrds = nltk.word_tokenize(pattern)
|
49 |
+
words.extend(wrds)
|
50 |
+
docs_x.append(wrds)
|
51 |
+
docs_y.append(intent["tag"])
|
52 |
+
if intent["tag"] not in labels:
|
53 |
+
labels.append(intent["tag"])
|
54 |
+
|
55 |
+
words = [stemmer.stem(w.lower()) for w in words if w != "?"]
|
56 |
+
words = sorted(list(set(words)))
|
57 |
+
labels = sorted(labels)
|
58 |
+
|
59 |
+
training = []
|
60 |
+
output = []
|
61 |
+
output_empty = [0 for _ in range(len(labels))]
|
62 |
+
|
63 |
+
for x, doc in enumerate(docs_x):
|
64 |
+
bag = []
|
65 |
+
wrds = [stemmer.stem(w.lower()) for w in doc]
|
66 |
+
for w in words:
|
67 |
+
if w in wrds:
|
68 |
+
bag.append(1)
|
69 |
+
else:
|
70 |
+
bag.append(0)
|
71 |
+
output_row = output_empty[:]
|
72 |
+
output_row[labels.index(docs_y[x])] = 1
|
73 |
+
training.append(bag)
|
74 |
+
output.append(output_row)
|
75 |
+
|
76 |
+
training = numpy.array(training)
|
77 |
+
output = numpy.array(output)
|
78 |
+
|
79 |
+
modelo = Sequential()
|
80 |
+
modelo.add(Dense(8, input_shape=[len(words)], activation='relu'))
|
81 |
+
modelo.add(Dense(len(labels), activation='softmax'))
|
82 |
+
modelo.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
|
83 |
+
modelo.fit(training, output, epochs=1000, batch_size=8)
|
84 |
+
|
85 |
+
return modelo
|
86 |
+
|
87 |
+
def responder_pregunta(modelo, pregunta):
|
88 |
+
global intents
|
89 |
+
words = []
|
90 |
+
labels = []
|
91 |
+
|
92 |
+
for intent in intents:
|
93 |
+
for pattern in intent["patterns"]:
|
94 |
+
wrds = nltk.word_tokenize(pattern)
|
95 |
+
words.extend(wrds)
|
96 |
+
if intent["tag"] not in labels:
|
97 |
+
labels.append(intent["tag"])
|
98 |
+
|
99 |
+
words = [stemmer.stem(w.lower()) for w in words if w != "?"]
|
100 |
+
words = sorted(list(set(words)))
|
101 |
+
labels = sorted(labels)
|
102 |
+
|
103 |
+
bag = [0 for _ in range(len(words))]
|
104 |
+
s_words = nltk.word_tokenize(pregunta)
|
105 |
+
s_words = [stemmer.stem(word.lower()) for word in s_words]
|
106 |
+
|
107 |
+
for se in s_words:
|
108 |
+
for i, w in enumerate(words):
|
109 |
+
if w == se:
|
110 |
+
bag[i] = 1
|
111 |
+
|
112 |
+
result = modelo.predict(numpy.array([bag]))
|
113 |
+
result_index = numpy.argmax(result)
|
114 |
+
tag = labels[result_index]
|
115 |
+
|
116 |
+
if result[0][result_index] > 0.7:
|
117 |
+
for tg in intents:
|
118 |
+
if tg['tag'] == tag:
|
119 |
+
responses = tg['responses']
|
120 |
+
return random.choice(responses)
|
121 |
+
else:
|
122 |
+
return "I didn't get that, try again"
|
123 |
+
|
124 |
+
@app.route('/chat', methods=['GET', 'POST'])
|
125 |
+
def chatBot():
|
126 |
+
chatInput = request.form.get('chatInput', '')
|
127 |
+
if not chatInput:
|
128 |
+
return jsonify(chatBotReply="No se proporcionó entrada.")
|
129 |
+
try:
|
130 |
+
intents.append({
|
131 |
+
"tag": chatInput,
|
132 |
+
"patterns": [chatInput],
|
133 |
+
"responses": ["Respuesta a " + chatInput]
|
134 |
+
})
|
135 |
+
|
136 |
+
modelo = entrenar_modelo()
|
137 |
+
reply = responder_pregunta(modelo, chatInput)
|
138 |
+
return jsonify(chatBotReply=reply)
|
139 |
+
except Exception as e:
|
140 |
+
return jsonify(chatBotReply=f"Error en chatBot: {e}")
|
141 |
+
|
142 |
+
if __name__ == '__main__':
|
143 |
+
app.run(host='0.0.0.0', port=7860, debug=True)
|