File size: 889 Bytes
4abac18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5666369
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import gradio as gr
from llama_cpp import Llama

llm = Llama(
    model_path="./qwen2-0_5b-instruct-q5_k_m.gguf",
    verbose=True
)

def predict(message, history):
    messages = [{"role": "system", "content": "You are a helpful assistant."}]
    for user_message, bot_message in history:
        if user_message:
            messages.append({"role": "user", "content": user_message})
        if bot_message:
            messages.append({"role": "assistant", "content": bot_message})
    messages.append({"role": "user", "content": message})
    
    response = ""
    for chunk in llm.create_chat_completion(
        stream=True,
        messages=messages,
    ):
        part = chunk["choices"][0]["delta"].get("content", None)
        if part:
            response += part
        yield response

demo = gr.ChatInterface(predict)

if __name__ == "__main__":
    demo.launch(share=true)