Spaces:
Running
Running
import argparse | |
import uvicorn | |
import sys | |
from fastapi import FastAPI | |
from pydantic import BaseModel, Field | |
from sse_starlette.sse import EventSourceResponse, ServerSentEvent | |
from utils.logger import logger | |
from networks.message_streamer import MessageStreamer | |
from messagers.message_composer import MessageComposer | |
from mocks.stream_chat_mocker import stream_chat_mock | |
class ChatAPIApp: | |
def __init__(self): | |
self.app = FastAPI( | |
docs_url="/", | |
title="HuggingFace LLM API", | |
swagger_ui_parameters={"defaultModelsExpandDepth": -1}, | |
version="1.0", | |
) | |
self.setup_routes() | |
def get_available_models(self): | |
self.available_models = [ | |
{ | |
"id": "mixtral-8x7b", | |
"description": "[Mixtral-8x7B-Instruct-v0.1]: https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1", | |
}, | |
{ | |
"id": "mistral-7b", | |
"description": "[Mistral-7B-Instruct-v0.2]: https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2", | |
}, | |
{ | |
"id": "openchat-3.5", | |
"description": "[openchat_3.5]: https://huggingface.co/openchat/openchat_3.5", | |
}, | |
] | |
return self.available_models | |
class ChatCompletionsPostItem(BaseModel): | |
model: str = Field( | |
default="mixtral-8x7b", | |
description="(str) `mixtral-8x7b`", | |
) | |
messages: list = Field( | |
default=[{"role": "user", "content": "Hello, who are you?"}], | |
description="(list) Messages", | |
) | |
temperature: float = Field( | |
default=0.01, | |
description="(float) Temperature", | |
) | |
max_tokens: int = Field( | |
default=8192, | |
description="(int) Max tokens", | |
) | |
stream: bool = Field( | |
default=True, | |
description="(bool) Stream", | |
) | |
def chat_completions(self, item: ChatCompletionsPostItem): | |
streamer = MessageStreamer(model=item.model) | |
composer = MessageComposer(model=item.model) | |
composer.merge(messages=item.messages) | |
# streamer.chat = stream_chat_mock | |
stream_response = streamer.chat_response( | |
prompt=composer.merged_str, | |
temperature=item.temperature, | |
max_new_tokens=item.max_tokens, | |
) | |
if item.stream: | |
event_source_response = EventSourceResponse( | |
streamer.chat_return_generator(stream_response), | |
media_type="text/event-stream", | |
ping=2000, | |
ping_message_factory=lambda: ServerSentEvent(**{"comment": ""}), | |
) | |
return event_source_response | |
else: | |
data_response = streamer.chat_return_dict(stream_response) | |
return data_response | |
def setup_routes(self): | |
for prefix in ["", "/v1"]: | |
self.app.get( | |
prefix + "/models", | |
summary="Get available models", | |
)(self.get_available_models) | |
self.app.post( | |
prefix + "/chat/completions", | |
summary="Chat completions in conversation session", | |
)(self.chat_completions) | |
class ArgParser(argparse.ArgumentParser): | |
def __init__(self, *args, **kwargs): | |
super(ArgParser, self).__init__(*args, **kwargs) | |
self.add_argument( | |
"-s", | |
"--server", | |
type=str, | |
default="0.0.0.0", | |
help="Server IP for HF LLM Chat API", | |
) | |
self.add_argument( | |
"-p", | |
"--port", | |
type=int, | |
default=23333, | |
help="Server Port for HF LLM Chat API", | |
) | |
self.add_argument( | |
"-d", | |
"--dev", | |
default=False, | |
action="store_true", | |
help="Run in dev mode", | |
) | |
self.args = self.parse_args(sys.argv[1:]) | |
app = ChatAPIApp().app | |
if __name__ == "__main__": | |
args = ArgParser().args | |
if args.dev: | |
uvicorn.run("__main__:app", host=args.server, port=args.port, reload=True) | |
else: | |
uvicorn.run("__main__:app", host=args.server, port=args.port, reload=False) | |
# python -m apis.chat_api # [Docker] on product mode | |
# python -m apis.chat_api -d # [Dev] on develop mode | |