Linly-Talker / pytorch3d /tests /test_mesh_normal_consistency.py
linxianzhong0128's picture
Upload folder using huggingface_hub
7088d16 verified
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import unittest
import torch
from pytorch3d.loss.mesh_normal_consistency import mesh_normal_consistency
from pytorch3d.structures.meshes import Meshes
from pytorch3d.utils.ico_sphere import ico_sphere
IS_TORCH_1_8 = torch.__version__.startswith("1.8.")
PROBLEMATIC_CUDA = torch.version.cuda in ("11.0", "11.1")
# TODO: There are problems with cuda 11.0 and 11.1 here.
# The symptom can be
# RuntimeError: radix_sort: failed on 1st step: cudaErrorInvalidDevice: invalid device ordinal
# or something like
# operator(): block: [0,0,0], thread: [96,0,0]
# Assertion `index >= -sizes[i] && index < sizes[i] && "index out of bounds"` failed.
AVOID_LARGE_MESH_CUDA = PROBLEMATIC_CUDA and IS_TORCH_1_8
class TestMeshNormalConsistency(unittest.TestCase):
def setUp(self) -> None:
torch.manual_seed(42)
@staticmethod
def init_faces(num_verts: int = 1000):
faces = []
for f0 in range(num_verts):
for f1 in range(f0 + 1, num_verts):
f2 = torch.arange(f1 + 1, num_verts)
n = f2.shape[0]
if n == 0:
continue
faces.append(
torch.stack(
[
torch.full((n,), f0, dtype=torch.int64),
torch.full((n,), f1, dtype=torch.int64),
f2,
],
dim=1,
)
)
faces = torch.cat(faces, 0)
return faces
@staticmethod
def init_meshes(num_meshes: int = 10, num_verts: int = 1000, num_faces: int = 3000):
if AVOID_LARGE_MESH_CUDA:
device = torch.device("cpu")
else:
device = torch.device("cuda:0")
valid_faces = TestMeshNormalConsistency.init_faces(num_verts).to(device)
verts_list = []
faces_list = []
for _ in range(num_meshes):
verts = (
torch.rand((num_verts, 3), dtype=torch.float32, device=device) * 2.0
- 1.0
) # verts in the space of [-1, 1]
"""
faces = torch.stack(
[
torch.randperm(num_verts, device=device)[:3]
for _ in range(num_faces)
],
dim=0,
)
# avoids duplicate vertices in a face
"""
idx = torch.randperm(valid_faces.shape[0], device=device)[
: min(valid_faces.shape[0], num_faces)
]
faces = valid_faces[idx]
verts_list.append(verts)
faces_list.append(faces)
meshes = Meshes(verts_list, faces_list)
return meshes
@staticmethod
def mesh_normal_consistency_naive(meshes):
"""
Naive iterative implementation of mesh normal consistency.
"""
N = len(meshes)
verts_packed = meshes.verts_packed()
faces_packed = meshes.faces_packed()
edges_packed = meshes.edges_packed()
face_to_edge = meshes.faces_packed_to_edges_packed()
edges_packed_to_mesh_idx = meshes.edges_packed_to_mesh_idx()
E = edges_packed.shape[0]
loss = []
mesh_idx = []
for e in range(E):
face_idx = face_to_edge.eq(e).any(1).nonzero() # indexed to faces
v0 = verts_packed[edges_packed[e, 0]]
v1 = verts_packed[edges_packed[e, 1]]
normals = []
for f in face_idx:
v2 = -1
for j in range(3):
if (
faces_packed[f, j] != edges_packed[e, 0]
and faces_packed[f, j] != edges_packed[e, 1]
):
v2 = faces_packed[f, j]
assert v2 > -1
v2 = verts_packed[v2]
normals.append((v1 - v0).view(-1).cross((v2 - v0).view(-1)))
for i in range(len(normals) - 1):
for j in range(i + 1, len(normals)):
mesh_idx.append(edges_packed_to_mesh_idx[e])
loss.append(
(
1
- torch.cosine_similarity(
normals[i].view(1, 3), -normals[j].view(1, 3)
)
)
)
mesh_idx = torch.tensor(mesh_idx, device=meshes.device)
num = mesh_idx.bincount(minlength=N)
weights = 1.0 / num[mesh_idx].float()
loss = torch.cat(loss) * weights
return loss.sum() / N
def test_mesh_normal_consistency_simple(self):
r"""
Mesh 1:
v3
/\
/ \
e4 / f1 \ e3
/ \
v2 /___e2___\ v1
\ /
\ /
e1 \ f0 / e0
\ /
\/
v0
"""
device = torch.device("cuda:0")
# mesh1 shown above
verts1 = torch.rand((4, 3), dtype=torch.float32, device=device)
faces1 = torch.tensor([[0, 1, 2], [2, 1, 3]], dtype=torch.int64, device=device)
# mesh2 is a cuboid with 8 verts, 12 faces and 18 edges
verts2 = torch.tensor(
[
[0, 0, 0],
[0, 0, 1],
[0, 1, 0],
[0, 1, 1],
[1, 0, 0],
[1, 0, 1],
[1, 1, 0],
[1, 1, 1],
],
dtype=torch.float32,
device=device,
)
faces2 = torch.tensor(
[
[0, 1, 2],
[1, 3, 2], # left face: 0, 1
[2, 3, 6],
[3, 7, 6], # bottom face: 2, 3
[0, 2, 6],
[0, 6, 4], # front face: 4, 5
[0, 5, 1],
[0, 4, 5], # up face: 6, 7
[6, 7, 5],
[6, 5, 4], # right face: 8, 9
[1, 7, 3],
[1, 5, 7], # back face: 10, 11
],
dtype=torch.int64,
device=device,
)
# mesh3 is like mesh1 but with another face added to e2
verts3 = torch.rand((5, 3), dtype=torch.float32, device=device)
faces3 = torch.tensor(
[[0, 1, 2], [2, 1, 3], [2, 1, 4]], dtype=torch.int64, device=device
)
meshes = Meshes(verts=[verts1, verts2, verts3], faces=[faces1, faces2, faces3])
# mesh1: normal consistency computation
n0 = (verts1[1] - verts1[2]).cross(verts1[3] - verts1[2])
n1 = (verts1[1] - verts1[2]).cross(verts1[0] - verts1[2])
loss1 = 1.0 - torch.cosine_similarity(n0.view(1, 3), -(n1.view(1, 3)))
# mesh2: normal consistency computation
# In the cube mesh, 6 edges are shared with coplanar faces (loss=0),
# 12 edges are shared by perpendicular faces (loss=1)
loss2 = 12.0 / 18
# mesh3
n0 = (verts3[1] - verts3[2]).cross(verts3[3] - verts3[2])
n1 = (verts3[1] - verts3[2]).cross(verts3[0] - verts3[2])
n2 = (verts3[1] - verts3[2]).cross(verts3[4] - verts3[2])
loss3 = (
3.0
- torch.cosine_similarity(n0.view(1, 3), -(n1.view(1, 3)))
- torch.cosine_similarity(n0.view(1, 3), -(n2.view(1, 3)))
- torch.cosine_similarity(n1.view(1, 3), -(n2.view(1, 3)))
)
loss3 /= 3.0
loss = (loss1 + loss2 + loss3) / 3.0
out = mesh_normal_consistency(meshes)
self.assertTrue(torch.allclose(out, loss))
def test_mesh_normal_consistency(self):
"""
Test Mesh Normal Consistency for random meshes.
"""
meshes = TestMeshNormalConsistency.init_meshes(5, 100, 300)
out1 = mesh_normal_consistency(meshes)
out2 = TestMeshNormalConsistency.mesh_normal_consistency_naive(meshes)
self.assertTrue(torch.allclose(out1, out2))
def test_no_intersection(self):
"""
Test Mesh Normal Consistency for a mesh known to have no
intersecting faces.
"""
verts = torch.rand(1, 6, 3)
faces = torch.arange(6).reshape(1, 2, 3)
meshes = Meshes(verts=verts, faces=faces)
out = mesh_normal_consistency(meshes)
self.assertEqual(out.item(), 0)
@staticmethod
def mesh_normal_consistency_with_ico(
num_meshes: int, level: int = 3, device: str = "cpu"
):
device = torch.device(device)
mesh = ico_sphere(level, device)
verts, faces = mesh.get_mesh_verts_faces(0)
verts_list = [verts.clone() for _ in range(num_meshes)]
faces_list = [faces.clone() for _ in range(num_meshes)]
meshes = Meshes(verts_list, faces_list)
torch.cuda.synchronize()
def loss():
mesh_normal_consistency(meshes)
torch.cuda.synchronize()
return loss