# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import unittest from math import radians import torch from pytorch3d.renderer.camera_utils import camera_to_eye_at_up, rotate_on_spot from pytorch3d.renderer.cameras import ( get_world_to_view_transform, look_at_view_transform, PerspectiveCameras, ) from pytorch3d.transforms import axis_angle_to_matrix from torch.nn.functional import normalize from .common_testing import TestCaseMixin def _batched_dotprod(x: torch.Tensor, y: torch.Tensor): """ Takes two tensors of shape (N,3) and returns their batched dot product along the last dimension as a tensor of shape (N,). """ return torch.einsum("ij,ij->i", x, y) class TestCameraUtils(TestCaseMixin, unittest.TestCase): def setUp(self) -> None: torch.manual_seed(42) def test_invert_eye_at_up(self): # Generate random cameras and check we can reconstruct their eye, at, # and up vectors. N = 13 eye = torch.rand(N, 3) at = torch.rand(N, 3) up = torch.rand(N, 3) R, T = look_at_view_transform(eye=eye, at=at, up=up) cameras = PerspectiveCameras(R=R, T=T) eye2, at2, up2 = camera_to_eye_at_up(cameras.get_world_to_view_transform()) # The retrieved eye matches self.assertClose(eye, eye2, atol=1e-5) self.assertClose(cameras.get_camera_center(), eye) # at-eye as retrieved must be a vector in the same direction as # the original. self.assertClose(normalize(at - eye), normalize(at2 - eye2)) # The up vector as retrieved should be rotated the same amount # around at-eye as the original. The component in the at-eye # direction is unimportant, as is the length. # So check that (up x (at-eye)) as retrieved is in the same # direction as its original value. up_check = torch.cross(up, at - eye, dim=-1) up_check2 = torch.cross(up2, at - eye, dim=-1) self.assertClose(normalize(up_check), normalize(up_check2)) # Master check that we get the same camera if we reinitialise. R2, T2 = look_at_view_transform(eye=eye2, at=at2, up=up2) cameras2 = PerspectiveCameras(R=R2, T=T2) cam_trans = cameras.get_world_to_view_transform() cam_trans2 = cameras2.get_world_to_view_transform() self.assertClose(cam_trans.get_matrix(), cam_trans2.get_matrix(), atol=1e-5) def test_rotate_on_spot_yaw(self): N = 14 eye = torch.rand(N, 3) at = torch.rand(N, 3) up = torch.rand(N, 3) R, T = look_at_view_transform(eye=eye, at=at, up=up) # Moving around the y axis looks left. angles = torch.FloatTensor([0, -radians(10), 0]) rotation = axis_angle_to_matrix(angles) R_rot, T_rot = rotate_on_spot(R, T, rotation) eye_rot, at_rot, up_rot = camera_to_eye_at_up( get_world_to_view_transform(R=R_rot, T=T_rot) ) self.assertClose(eye, eye_rot, atol=1e-5) # Make vectors pointing exactly left and up left = torch.cross(up, at - eye, dim=-1) left_rot = torch.cross(up_rot, at_rot - eye_rot, dim=-1) fully_up = torch.cross(at - eye, left, dim=-1) fully_up_rot = torch.cross(at_rot - eye_rot, left_rot, dim=-1) # The up direction is unchanged self.assertClose(normalize(fully_up), normalize(fully_up_rot), atol=1e-5) # The camera has moved left agree = _batched_dotprod(torch.cross(left, left_rot, dim=1), fully_up) self.assertGreater(agree.min(), 0) # Batch dimension for rotation R_rot2, T_rot2 = rotate_on_spot(R, T, rotation.expand(N, 3, 3)) self.assertClose(R_rot, R_rot2) self.assertClose(T_rot, T_rot2) # No batch dimension for either R_rot3, T_rot3 = rotate_on_spot(R[0], T[0], rotation) self.assertClose(R_rot[:1], R_rot3) self.assertClose(T_rot[:1], T_rot3) # No batch dimension for R, T R_rot4, T_rot4 = rotate_on_spot(R[0], T[0], rotation.expand(N, 3, 3)) self.assertClose(R_rot[:1].expand(N, 3, 3), R_rot4) self.assertClose(T_rot[:1].expand(N, 3), T_rot4) def test_rotate_on_spot_pitch(self): N = 14 eye = torch.rand(N, 3) at = torch.rand(N, 3) up = torch.rand(N, 3) R, T = look_at_view_transform(eye=eye, at=at, up=up) # Moving around the x axis looks down. angles = torch.FloatTensor([-radians(10), 0, 0]) rotation = axis_angle_to_matrix(angles) R_rot, T_rot = rotate_on_spot(R, T, rotation) eye_rot, at_rot, up_rot = camera_to_eye_at_up( get_world_to_view_transform(R=R_rot, T=T_rot) ) self.assertClose(eye, eye_rot, atol=1e-5) # A vector pointing left is unchanged left = torch.cross(up, at - eye, dim=-1) left_rot = torch.cross(up_rot, at_rot - eye_rot, dim=-1) self.assertClose(normalize(left), normalize(left_rot), atol=1e-5) # The camera has moved down fully_up = torch.cross(at - eye, left, dim=-1) fully_up_rot = torch.cross(at_rot - eye_rot, left_rot, dim=-1) agree = _batched_dotprod(torch.cross(fully_up, fully_up_rot, dim=1), left) self.assertGreater(agree.min(), 0) def test_rotate_on_spot_roll(self): N = 14 eye = torch.rand(N, 3) at = torch.rand(N, 3) up = torch.rand(N, 3) R, T = look_at_view_transform(eye=eye, at=at, up=up) # Moving around the z axis rotates the image. angles = torch.FloatTensor([0, 0, -radians(10)]) rotation = axis_angle_to_matrix(angles) R_rot, T_rot = rotate_on_spot(R, T, rotation) eye_rot, at_rot, up_rot = camera_to_eye_at_up( get_world_to_view_transform(R=R_rot, T=T_rot) ) self.assertClose(eye, eye_rot, atol=1e-5) self.assertClose(normalize(at - eye), normalize(at_rot - eye), atol=1e-5) # The camera has moved clockwise agree = _batched_dotprod(torch.cross(up, up_rot, dim=1), at - eye) self.assertGreater(agree.min(), 0)