import os
import random
import gradio as gr
from zhconv import convert
from LLM import LLM
from ASR import WhisperASR
from TFG import SadTalker
from TTS import EdgeTTS
from src.cost_time import calculate_time
from configs import *
os.environ["GRADIO_TEMP_DIR"]= './temp'
description = """
Linly 智能对话系统 (Linly-Talker)
[知乎]
[bilibili]
[GitHub]
[个人主页]
Linly-Talker 是一款智能 AI 对话系统,结合了大型语言模型 (LLMs) 与视觉模型,是一种新颖的人工智能交互方式。
"""
# 设定默认参数值,可修改
source_image = r'example.png'
blink_every = True
size_of_image = 256
preprocess_type = 'crop'
facerender = 'facevid2vid'
enhancer = False
is_still_mode = False
pic_path = "./inputs/girl.png"
crop_pic_path = "./inputs/first_frame_dir_girl/girl.png"
first_coeff_path = "./inputs/first_frame_dir_girl/girl.mat"
crop_info = ((403, 403), (19, 30, 502, 513), [40.05956541381802, 40.17324339233366, 443.7892505041507, 443.9029284826663])
exp_weight = 1
use_ref_video = False
ref_video = None
ref_info = 'pose'
use_idle_mode = False
length_of_audio = 5
@calculate_time
def Asr(audio):
try:
question = asr.transcribe(audio)
question = convert(question, 'zh-cn')
except Exception as e:
print("ASR Error: ", e)
question = 'Gradio存在一些bug,麦克风模式有时候可能音频还未传入,请重新点击一下语音识别即可'
gr.Warning(question)
return question
@calculate_time
def TTS_response(text,
voice, rate, volume, pitch,):
try:
tts.predict(text, voice, rate, volume, pitch , 'answer.wav', 'answer.vtt')
except:
os.system(f'edge-tts --text "{text}" --voice {voice} --write-media answer.wav --write-subtitles answer.vtt')
return 'answer.wav', 'answer.vtt'
@calculate_time
def LLM_response(question, voice = 'zh-CN-XiaoxiaoNeural', rate = 0, volume = 0, pitch = 0):
answer = llm.generate(question)
print(answer)
answer_audio, answer_vtt, _ = TTS_response(answer, voice, rate, volume, pitch)
return answer_audio, answer_vtt, answer
@calculate_time
def Talker_response(text, voice = 'zh-CN-XiaoxiaoNeural', rate = 0, volume = 100, pitch = 0, batch_size = 2):
voice = 'zh-CN-XiaoxiaoNeural' if voice not in tts.SUPPORTED_VOICE else voice
# print(voice , rate , volume , pitch)
driven_audio, driven_vtt, _ = LLM_response(text, voice, rate, volume, pitch)
pose_style = random.randint(0, 45)
video = talker.test(pic_path,
crop_pic_path,
first_coeff_path,
crop_info,
source_image,
driven_audio,
preprocess_type,
is_still_mode,
enhancer,
batch_size,
size_of_image,
pose_style,
facerender,
exp_weight,
use_ref_video,
ref_video,
ref_info,
use_idle_mode,
length_of_audio,
blink_every,
fps=20)
if driven_vtt:
return video, driven_vtt
else:
return video
def main():
with gr.Blocks(analytics_enabled=False, title = 'Linly-Talker') as inference:
gr.HTML(description)
with gr.Row(equal_height=False):
with gr.Column(variant='panel'):
with gr.Tabs(elem_id="question_audio"):
with gr.TabItem('对话'):
with gr.Column(variant='panel'):
question_audio = gr.Audio(sources=['microphone','upload'], type="filepath", label = '语音对话')
input_text = gr.Textbox(label="Input Text", lines=3)
with gr.Accordion("Advanced Settings(高级设置语音参数) ",
open=False):
voice = gr.Dropdown(tts.SUPPORTED_VOICE,
value='zh-CN-XiaoxiaoNeural',
label="Voice")
rate = gr.Slider(minimum=-100,
maximum=100,
value=0,
step=1.0,
label='Rate')
volume = gr.Slider(minimum=0,
maximum=100,
value=100,
step=1,
label='Volume')
pitch = gr.Slider(minimum=-100,
maximum=100,
value=0,
step=1,
label='Pitch')
batch_size = gr.Slider(minimum=1,
maximum=10,
value=2,
step=1,
label='Talker Batch size')
asr_text = gr.Button('语音识别(语音对话后点击)')
asr_text.click(fn=Asr,inputs=[question_audio],outputs=[input_text])
# with gr.Column(variant='panel'):
# input_text = gr.Textbox(label="Input Text", lines=3)
# text_button = gr.Button("文字对话", variant='primary')
with gr.Column(variant='panel'):
with gr.Tabs():
with gr.TabItem('数字人问答'):
gen_video = gr.Video(label="Generated video", format="mp4", scale=1, autoplay=True)
video_button = gr.Button("提交", variant='primary')
video_button.click(fn=Talker_response,inputs=[input_text,voice, rate, volume, pitch, batch_size],outputs=[gen_video])
with gr.Row():
with gr.Column(variant='panel'):
gr.Markdown("## Text Examples")
examples = ['应对压力最有效的方法是什么?',
'如何进行时间管理?',
'为什么有些人选择使用纸质地图或寻求方向,而不是依赖GPS设备或智能手机应用程序?',
'近日,苹果公司起诉高通公司,状告其未按照相关合约进行合作,高通方面尚未回应。这句话中“其”指的是谁?',
'三年级同学种树80颗,四、五年级种的棵树比三年级种的2倍多14棵,三个年级共种树多少棵?',
'撰写一篇交响乐音乐会评论,讨论乐团的表演和观众的整体体验。',
'翻译成中文:Luck is a dividend of sweat. The more you sweat, the luckier you get.',
]
gr.Examples(
examples = examples,
fn = Talker_response,
inputs = [input_text],
outputs=[gen_video],
# cache_examples = True,
)
return inference
if __name__ == "__main__":
# llm = LLM(mode='offline').init_model('Linly', 'Linly-AI/Chinese-LLaMA-2-7B-hf')
# llm = LLM(mode='offline').init_model('Gemini', 'gemini-pro', api_key = "your api key")
# llm = LLM(mode='offline').init_model('Qwen', 'Qwen/Qwen-1_8B-Chat')
llm = LLM(mode='offline').init_model('Qwen', 'Qwen/Qwen-1_8B-Chat')
talker = SadTalker(lazy_load=True)
asr = WhisperASR('base')
tts = EdgeTTS()
gr.close_all()
demo = main()
demo.queue()
# demo.launch()
demo.launch(server_name=ip, # 本地端口localhost:127.0.0.1 全局端口转发:"0.0.0.0"
server_port=port,
# 似乎在Gradio4.0以上版本可以不使用证书也可以进行麦克风对话
ssl_certfile=ssl_certfile,
ssl_keyfile=ssl_keyfile,
ssl_verify=False,
share=True,
debug=True)