# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import unittest import torch from pytorch3d.ops import cot_laplacian, laplacian, norm_laplacian from pytorch3d.structures.meshes import Meshes from .common_testing import get_random_cuda_device, TestCaseMixin class TestLaplacianMatrices(TestCaseMixin, unittest.TestCase): def setUp(self) -> None: super().setUp() torch.manual_seed(1) def init_mesh(self) -> Meshes: V, F = 32, 64 device = get_random_cuda_device() # random vertices verts = torch.rand((V, 3), dtype=torch.float32, device=device) # random valid faces (no self circles, e.g. (v0, v0, v1)) faces = torch.stack([torch.randperm(V) for f in range(F)], dim=0)[:, :3] faces = faces.to(device=device) return Meshes(verts=[verts], faces=[faces]) def test_laplacian(self): mesh = self.init_mesh() verts = mesh.verts_packed() edges = mesh.edges_packed() V, E = verts.shape[0], edges.shape[0] L = laplacian(verts, edges) Lnaive = torch.zeros((V, V), dtype=torch.float32, device=verts.device) for e in range(E): e0, e1 = edges[e] Lnaive[e0, e1] = 1 # symetric Lnaive[e1, e0] = 1 deg = Lnaive.sum(1).view(-1, 1) deg[deg > 0] = 1.0 / deg[deg > 0] Lnaive = Lnaive * deg diag = torch.eye(V, dtype=torch.float32, device=mesh.device) Lnaive.masked_fill_(diag > 0, -1) self.assertClose(L.to_dense(), Lnaive) def test_cot_laplacian(self): mesh = self.init_mesh() verts = mesh.verts_packed() faces = mesh.faces_packed() V = verts.shape[0] eps = 1e-12 L, inv_areas = cot_laplacian(verts, faces, eps=eps) Lnaive = torch.zeros((V, V), dtype=torch.float32, device=verts.device) inv_areas_naive = torch.zeros((V, 1), dtype=torch.float32, device=verts.device) for f in faces: v0 = verts[f[0], :] v1 = verts[f[1], :] v2 = verts[f[2], :] A = (v1 - v2).norm() B = (v0 - v2).norm() C = (v0 - v1).norm() s = 0.5 * (A + B + C) face_area = (s * (s - A) * (s - B) * (s - C)).clamp_(min=1e-12).sqrt() inv_areas_naive[f[0]] += face_area inv_areas_naive[f[1]] += face_area inv_areas_naive[f[2]] += face_area A2, B2, C2 = A * A, B * B, C * C cota = (B2 + C2 - A2) / face_area / 4.0 cotb = (A2 + C2 - B2) / face_area / 4.0 cotc = (A2 + B2 - C2) / face_area / 4.0 Lnaive[f[1], f[2]] += cota Lnaive[f[2], f[0]] += cotb Lnaive[f[0], f[1]] += cotc # symetric Lnaive[f[2], f[1]] += cota Lnaive[f[0], f[2]] += cotb Lnaive[f[1], f[0]] += cotc idx = inv_areas_naive > 0 inv_areas_naive[idx] = 1.0 / inv_areas_naive[idx] self.assertClose(inv_areas, inv_areas_naive) self.assertClose(L.to_dense(), Lnaive) def test_norm_laplacian(self): mesh = self.init_mesh() verts = mesh.verts_packed() edges = mesh.edges_packed() V, E = verts.shape[0], edges.shape[0] eps = 1e-12 L = norm_laplacian(verts, edges, eps=eps) Lnaive = torch.zeros((V, V), dtype=torch.float32, device=verts.device) for e in range(E): e0, e1 = edges[e] v0 = verts[e0] v1 = verts[e1] w01 = 1.0 / ((v0 - v1).norm() + eps) Lnaive[e0, e1] += w01 Lnaive[e1, e0] += w01 self.assertClose(L.to_dense(), Lnaive)