Spaces:
Runtime error
Runtime error
from functools import lru_cache | |
from typing import Dict, List | |
import plotly.express as px | |
import streamlit as st | |
from datasets import Dataset, get_dataset_infos, load_dataset | |
BASE_DATASET: str = "lion-ai/pl_med_data" | |
read_key = os.environ.get('HF_TOKEN', None) | |
dataset_names_map: Dict[str, str] = { | |
"znany_lekarz": "Porady - pytania i odpowiedzi", | |
"kor_epikryzy_qa": "Dokumentacja medyczna - pytania i odpowiedzi", | |
"wikipedia": "Ogólna wiedza medyczna - pytania i opowiedzi", | |
} | |
reverse_dataset_names_map: Dict[str, str] = {v: k for k, v in dataset_names_map.items()} | |
def list_datasets() -> Dict[str, Dataset]: | |
""" | |
Retrieves a list of dataset information. | |
Returns: | |
List[Dict[str, str]]: A list of dataset information. | |
""" | |
return get_dataset_infos(BASE_DATASET) | |
def show_examples(dataset_name: str, split: str) -> None: | |
dataset_name = reverse_dataset_names_map.get(dataset_name, dataset_name) | |
dataset: Dataset = load_dataset(BASE_DATASET, dataset_name, split=f"{split}[:10]", use_auth_token=read_key) | |
st.data_editor(dataset.to_pandas(), use_container_width=True) | |
def count_all_examples(datasets: Dict[str, Dataset]) -> None: | |
count: int = 0 | |
for dataset_name, dataset_info in datasets.items(): | |
count += dataset_info.num_examples | |
st.metric(label="Total no. of instructions", value=f"{count:,}") | |
def filter_splits(dataset: Dict[str, Dataset], split: str) -> Dict[str, Dataset]: | |
""" | |
Filter the dataset based on the specified split. | |
Args: | |
dataset (Dict[str, Dataset]): A dictionary containing dataset information. | |
split (str): The split to filter the dataset by. | |
Returns: | |
Dict[str, Dataset]: A dictionary containing the filtered dataset splits. | |
""" | |
dataset_splits: Dict[str, Dataset] = {} | |
for dataset_name, dataset_info in dataset.items(): | |
if split in dataset_info.splits: | |
dataset_name = dataset_names_map.get(dataset_name, dataset_name) | |
dataset_splits[dataset_name] = dataset_info.splits[split] | |
return dataset_splits | |
split: str = st.selectbox("splits", ["raw", "processed"]) | |
datasets: Dict[str, Dataset] = list_datasets() | |
# st.write(datasets) | |
filtered_datasets: Dict[str, Dataset] = filter_splits(datasets, split) | |
# st.write(filtered_datasets) | |
count_all_examples(filtered_datasets) | |
# Create a pie chart showing the number of examples per dataset | |
fig = px.pie( | |
values=[split.num_examples for split in filtered_datasets.values()], | |
names=list(filtered_datasets.keys()), | |
# title=f"Number of Examples per Dataset ({split} split)", | |
labels={"label": "Dataset", "value": "Number of Examples"}, | |
) | |
# Update layout for better readability | |
fig.update_traces(textposition="inside", textinfo="value+label") | |
fig.update_layout(legend_title_text="Datasets", uniformtext_minsize=12, uniformtext_mode="hide") | |
chart = st.plotly_chart(fig, use_container_width=True) | |
dataset_name = st.selectbox("Select a dataset", list(filtered_datasets.keys())) | |
show_examples(dataset_name, split) |