Spaces:
Runtime error
Runtime error
AleksanderObuchowski
commited on
Commit
•
7bb750a
1
Parent(s):
f3c17dc
get some swaaaag
Browse files- .gitignore +2 -0
- .streamlit/config.toml +9 -0
- Eskulap.png +0 -0
- app.py +143 -34
- requirements.txt +3 -1
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
venv
|
2 |
+
.venv
|
.streamlit/config.toml
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[client]
|
2 |
+
showErrorDetails = false
|
3 |
+
|
4 |
+
[theme]
|
5 |
+
primaryColor="#70a99f"
|
6 |
+
backgroundColor="#212c2a"
|
7 |
+
secondaryBackgroundColor="#415854"
|
8 |
+
textColor="#70a99f"
|
9 |
+
font="monospace"
|
Eskulap.png
ADDED
app.py
CHANGED
@@ -4,21 +4,61 @@ from typing import Dict, List
|
|
4 |
|
5 |
import plotly.express as px
|
6 |
import streamlit as st
|
|
|
7 |
|
8 |
from datasets import Dataset, get_dataset_infos, load_dataset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
BASE_DATASET: str = "lion-ai/pl_med_data"
|
11 |
read_key = os.environ.get('HF_TOKEN', None)
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
}
|
19 |
|
|
|
|
|
|
|
20 |
reverse_dataset_names_map: Dict[str, str] = {v: k for k, v in dataset_names_map.items()}
|
21 |
|
|
|
|
|
|
|
22 |
|
23 |
@st.cache_resource
|
24 |
def list_datasets() -> Dict[str, Dataset]:
|
@@ -34,8 +74,8 @@ def list_datasets() -> Dict[str, Dataset]:
|
|
34 |
def show_examples(dataset_name: str, split: str) -> None:
|
35 |
dataset_name = reverse_dataset_names_map.get(dataset_name, dataset_name)
|
36 |
|
37 |
-
dataset: Dataset = load_dataset(BASE_DATASET, dataset_name, split=f"{split}[:
|
38 |
-
st.data_editor(dataset.to_pandas(), use_container_width=True)
|
39 |
|
40 |
|
41 |
def count_all_examples(datasets: Dict[str, Dataset]) -> None:
|
@@ -64,32 +104,101 @@ def filter_splits(dataset: Dict[str, Dataset], split: str) -> Dict[str, Dataset]
|
|
64 |
dataset_splits[dataset_name] = dataset_info.splits[split]
|
65 |
return dataset_splits
|
66 |
|
|
|
|
|
|
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
)
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
-
show_examples(dataset_name, split)
|
|
|
4 |
|
5 |
import plotly.express as px
|
6 |
import streamlit as st
|
7 |
+
import pandas as pd
|
8 |
|
9 |
from datasets import Dataset, get_dataset_infos, load_dataset
|
10 |
+
import stanza
|
11 |
+
|
12 |
+
import matplotlib.pyplot as plt
|
13 |
+
from wordcloud import WordCloud
|
14 |
+
import io
|
15 |
+
|
16 |
+
st.set_page_config(
|
17 |
+
page_title="Eskulap Dataset",
|
18 |
+
page_icon="🩺",
|
19 |
+
layout="wide",
|
20 |
+
initial_sidebar_state="expanded",
|
21 |
+
)
|
22 |
+
|
23 |
|
24 |
BASE_DATASET: str = "lion-ai/pl_med_data"
|
25 |
read_key = os.environ.get('HF_TOKEN', None)
|
26 |
|
27 |
+
datasets_map = {
|
28 |
+
"znany_lekarz":
|
29 |
+
{
|
30 |
+
"display_name": "Porady",
|
31 |
+
"description": "Zbiór pytań i odpowiedzi odnośnie medycyny.",
|
32 |
+
"primary_column": "question",
|
33 |
+
},
|
34 |
+
"kor_epikryzy_qa":
|
35 |
+
{
|
36 |
+
"display_name": "Dokumentacja - QA",
|
37 |
+
"description": "Zbiór pytań i odpowiedzi do zanonimizowanej dokumentacji medycznej.",
|
38 |
+
"primary_column": "content",
|
39 |
+
},
|
40 |
+
"wikipedia":
|
41 |
+
{
|
42 |
+
"display_name": "Wikipedia",
|
43 |
+
"description": "Zbiór pytań i odpowiedzi na podstawie artykułów z Wikipedii.",
|
44 |
+
"primary_column": "question",
|
45 |
+
},
|
46 |
+
"ulotki_medyczne":
|
47 |
+
{
|
48 |
+
"display_name": "Pytania farmaceutyczne",
|
49 |
+
"description": "Zbiór pytań i odpowiedzi na podstawie ulotek medycznych.",
|
50 |
+
"primary_column": "question",
|
51 |
+
},
|
52 |
}
|
53 |
|
54 |
+
|
55 |
+
dataset_names_map: Dict[str, str] = {k: v["display_name"] for k, v in datasets_map.items()}
|
56 |
+
|
57 |
reverse_dataset_names_map: Dict[str, str] = {v: k for k, v in dataset_names_map.items()}
|
58 |
|
59 |
+
@st.cache_resource
|
60 |
+
def load_stanza_pipeline():
|
61 |
+
return stanza.Pipeline(lang='pl', processors='tokenize,mwt,pos,lemma')
|
62 |
|
63 |
@st.cache_resource
|
64 |
def list_datasets() -> Dict[str, Dataset]:
|
|
|
74 |
def show_examples(dataset_name: str, split: str) -> None:
|
75 |
dataset_name = reverse_dataset_names_map.get(dataset_name, dataset_name)
|
76 |
|
77 |
+
dataset: Dataset = load_dataset(BASE_DATASET, dataset_name, split=f"{split}[:50]", token=read_key)
|
78 |
+
st.data_editor(dataset.to_pandas(), use_container_width=True, height=900)
|
79 |
|
80 |
|
81 |
def count_all_examples(datasets: Dict[str, Dataset]) -> None:
|
|
|
104 |
dataset_splits[dataset_name] = dataset_info.splits[split]
|
105 |
return dataset_splits
|
106 |
|
107 |
+
@st.cache_data(show_spinner=False)
|
108 |
+
def generate_wordcloud(dataset_name, split):
|
109 |
+
dataset_name = reverse_dataset_names_map.get(dataset_name, dataset_name)
|
110 |
|
111 |
+
dataset: Dataset = load_dataset(BASE_DATASET, dataset_name, split=f"{split}[:500]", token=read_key)
|
112 |
+
|
113 |
+
primary_column = datasets_map[dataset_name]["primary_column"]
|
114 |
+
|
115 |
+
text = ""
|
116 |
+
progress_bar = st.progress(0, text = "Generating wordcloud...")
|
117 |
+
for i, example in enumerate(dataset[primary_column]):
|
118 |
+
doc = stanza_pipeline(example)
|
119 |
+
nouns = [word.lemma for sent in doc.sentences for word in sent.words if word.upos == 'NOUN']
|
120 |
+
text += " ".join(nouns) + " "
|
121 |
+
progress_bar.progress((i + 1) / len(dataset[primary_column]), text = f"Generating wordcloud...")
|
122 |
+
|
123 |
+
wordcloud = WordCloud(width=600, height=600, background_color='#212c2a', colormap="Greens", contour_width=0, contour_color="#212c2a").generate(text)
|
124 |
+
progress_bar.empty()
|
125 |
+
|
126 |
+
plt.figure(figsize=(6, 6), facecolor='#212c2a')
|
127 |
+
plt.imshow(wordcloud, interpolation='bilinear')
|
128 |
+
plt.axis('off')
|
129 |
+
plt.tight_layout(pad=0)
|
130 |
+
|
131 |
+
# Save the plot to a bytes buffer
|
132 |
+
buf = io.BytesIO()
|
133 |
+
plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0, facecolor='#212c2a')
|
134 |
+
buf.seek(0)
|
135 |
+
|
136 |
+
# Display the image in Streamlit
|
137 |
+
st.image(buf, use_column_width=True)
|
138 |
+
|
139 |
+
|
140 |
+
_, col, _ = st.columns([1, 2, 1])
|
141 |
+
|
142 |
+
with col:
|
143 |
+
split: str = "processed"
|
144 |
+
|
145 |
+
datasets: Dict[str, Dataset] = list_datasets()
|
146 |
+
stanza_pipeline = load_stanza_pipeline()
|
147 |
+
# st.write(datasets)
|
148 |
+
|
149 |
+
filtered_datasets: Dict[str, Dataset] = filter_splits(datasets, split)
|
150 |
+
# st.write(filtered_datasets)
|
151 |
+
image = st.image("Eskulap.png", use_column_width=True)
|
152 |
+
|
153 |
+
count_all_examples(filtered_datasets)
|
154 |
+
|
155 |
+
distribution = {
|
156 |
+
"dataset": list(filtered_datasets.keys()),
|
157 |
+
"count": [split.num_examples for split in filtered_datasets.values()],
|
158 |
+
}
|
159 |
+
|
160 |
+
distribution_df = pd.DataFrame(distribution)
|
161 |
+
|
162 |
+
# Create a pie chart showing the number of examples per dataset
|
163 |
+
fig = px.pie(
|
164 |
+
distribution_df,
|
165 |
+
names="dataset",
|
166 |
+
values="count",
|
167 |
+
hover_name="dataset",
|
168 |
+
title=f"Data distribution",
|
169 |
+
labels={"label": "Dataset", "value": "Number of Examples"},
|
170 |
+
color_discrete_sequence=px.colors.sequential.Blugrn,
|
171 |
+
hole=0.3,
|
172 |
+
)
|
173 |
+
|
174 |
+
# Update layout for better readability
|
175 |
+
# fig.update_traces(textposition="inside", textinfo="value+label")
|
176 |
+
fig.update_traces(textposition='none')
|
177 |
+
fig.update_layout(legend_title_text="Datasets", uniformtext_minsize=12, uniformtext_mode="hide")
|
178 |
+
|
179 |
+
chart = st.plotly_chart(fig, use_container_width=True)
|
180 |
+
|
181 |
+
|
182 |
+
dataset_name = st.selectbox("Select a dataset", list(filtered_datasets.keys()))
|
183 |
+
st.write(f"### {dataset_name}")
|
184 |
+
st.write(datasets_map[reverse_dataset_names_map.get(dataset_name)]["description"])
|
185 |
+
st.markdown("***")
|
186 |
+
col1, col2 = st.columns(2)
|
187 |
+
with col1:
|
188 |
+
st.write(f"### Sample data")
|
189 |
+
show_examples(dataset_name, split)
|
190 |
+
|
191 |
+
|
192 |
+
with col2:
|
193 |
+
st.write(f"### Wordcloud")
|
194 |
+
generate_wordcloud(dataset_name, split)
|
195 |
+
|
196 |
+
_, col, _ = st.columns([1, 2, 1])
|
197 |
+
|
198 |
+
|
199 |
+
with col:
|
200 |
+
st.button("Made with ❤️ by thelion.ai", use_container_width=True, disabled=True)
|
201 |
+
st.write("Intersted in the project? Contact us : contact@thelion.ai")
|
202 |
+
|
203 |
+
|
204 |
|
|
requirements.txt
CHANGED
@@ -1 +1,3 @@
|
|
1 |
-
plotly==5.23.0
|
|
|
|
|
|
1 |
+
plotly==5.23.0
|
2 |
+
wordcloud==1.9.3
|
3 |
+
stanze==1.8.2
|