from functools import partial from PIL import Image import numpy as np import gradio as gr import torch import os import fire from ldm.util import add_margin _TITLE = '''SyncDreamer: Generating Multiview-consistent Images from a Single-view Image''' _DESCRIPTION = '''
Given a single-view image, SyncDreamer is able to generate multiview-consistent images, which enables direct 3D reconstruction with NeuS or NeRF without SDS loss''' _USER_GUIDE0 = "Step0: Please upload an image in the block above (or choose an example above). We use alpha values as object masks if given." _USER_GUIDE1 = "Step1: Please select a crop size using the glider." _USER_GUIDE2 = "Step2: Please choose a suitable elevation angle and then click the Generate button." def mask_prediction(mask_predictor, image_in: Image.Image): if image_in.mode=='RGBA': return image_in else: raise NotImplementedError def resize_inputs(image_input, crop_size): alpha_np = np.asarray(image_input)[:, :, 3] coords = np.stack(np.nonzero(alpha_np), 1)[:, (1, 0)] min_x, min_y = np.min(coords, 0) max_x, max_y = np.max(coords, 0) ref_img_ = image_input.crop((min_x, min_y, max_x, max_y)) h, w = ref_img_.height, ref_img_.width scale = crop_size / max(h, w) h_, w_ = int(scale * h), int(scale * w) ref_img_ = ref_img_.resize((w_, h_), resample=Image.BICUBIC) results = add_margin(ref_img_, size=256) return results def run_demo(): device = f"cuda:0" if torch.cuda.is_available() else "cpu" models = None # init_model(device, os.path.join(code_dir, ckpt)) # init sam model mask_predictor = None # sam_init(device_idx) # with open('instructions_12345.md', 'r') as f: # article = f.read() # NOTE: Examples must match inputs example_folder = os.path.join(os.path.dirname(__file__), 'hf_demo', 'examples') example_fns = os.listdir(example_folder) example_fns.sort() examples_full = [os.path.join(example_folder, x) for x in example_fns if x.endswith('.png')] # Compose demo layout & data flow. with gr.Blocks(title=_TITLE, css="hf_demo/style.css") as demo: with gr.Row(): with gr.Column(scale=1): gr.Markdown('# ' + _TITLE) # with gr.Column(scale=0): # gr.DuplicateButton(value='Duplicate Space for private use', elem_id='duplicate-button') gr.Markdown(_DESCRIPTION) with gr.Row(variant='panel'): with gr.Column(scale=1): image_block = gr.Image(type='pil', image_mode='RGBA', height=256, label='Input image', tool=None, interactive=True) guide_text = gr.Markdown(_USER_GUIDE0, visible=True) gr.Examples( examples=examples_full, # NOTE: elements must match inputs list! inputs=[image_block], outputs=[image_block], cache_examples=False, label='Examples (click one of the images below to start)', examples_per_page=40 ) with gr.Column(scale=1): sam_block = gr.Image(type='pil', image_mode='RGBA', label="SAM output", height=256, interactive=False) crop_size_slider = gr.Slider(120, 240, 200, step=10, label='Crop size', interactive=True) with gr.Column(scale=1): input_block = gr.Image(type='pil', image_mode='RGB', label="Input to SyncDreamer", height=256, interactive=False) elevation_slider = gr.Slider(-10, 40, 30, step=5, label='Elevation angle', interactive=True) run_btn = gr.Button('Run Generation', variant='primary', interactive=False) update_guide = lambda GUIDE_TEXT: gr.update(value=GUIDE_TEXT) image_block.change(fn=partial(mask_prediction, mask_predictor), inputs=[image_block], outputs=[sam_block], queue=False)\ .success(fn=partial(update_guide, _USER_GUIDE1), outputs=[guide_text], queue=False) crop_size_slider.change(fn=resize_inputs, inputs=[sam_block, crop_size_slider], outputs=[input_block], queue=False)\ .success(fn=partial(update_guide, _USER_GUIDE2), outputs=[guide_text], queue=False) run_btn.click demo.queue().launch(share=False, max_threads=80) # auth=("admin", os.environ['PASSWD']) if __name__=="__main__": fire.Fire(run_demo)