File size: 10,548 Bytes
e52682b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import os
import json
import math
import argparse
import warnings
import traceback
from tqdm import tqdm

from torch.utils.data import Dataset, DataLoader

import sys
sys.path.append('./')
from videollama2 import model_init, mm_infer
from videollama2.utils import disable_torch_init

# NOTE: Ignore TypedStorage warning, which refers to this link~(https://github.com/pytorch/pytorch/issues/97207#issuecomment-1494781560)
warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated')


def split_list(lst, n):
    """Split a list into n (roughly) equal-sized chunks"""
    chunk_size = math.ceil(len(lst) / n)  # integer division
    return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]


def get_chunk(lst, n, k):
    chunks = split_list(lst, n)
    return chunks[k]


class ClothoAQADataset(Dataset):

    audoi_formats = ['.wav', '.flac']

    def __init__(self, questions, processor):
        self.questions = questions
        self.processor = processor

    def __len__(self):
        return len(self.questions)
    
    def __getitem__(self, idx):
        sample = self.questions[idx]

        audio_path  = sample['audio']
        question    = sample['conversations'][0]["value"]
        wrapped_question = f"Question: {question}\nAnswer the question using a single word."
        question_id = sample['id']
        answer      = sample['conversations'][1]["value"]

        audio_tensor = self.processor(audio_path)

        return {
            'audio':       audio_tensor,
            'audio_name':  audio_path.split("/")[-1],
            'question':    wrapped_question,
            'question_id': question_id,
            'answer':      answer,
        }

class ClothoDataset(Dataset):

    audoi_formats = ['.wav', '.flac']

    def __init__(self, questions, processor):
        self.questions = questions
        self.processor = processor

    def __len__(self):
        return len(self.questions)
    
    def __getitem__(self, idx):
        sample = self.questions[idx]

        audio_path  = sample['audio']
        wrapped_question = f"Describe the audio."
        question_id = audio_path.split("/")[-1]
        answer      = sample['captions']

        audio_tensor = self.processor(audio_path)

        return {
            'audio':       audio_tensor,
            'audio_name':  audio_path.split("/")[-1],
            'question':    wrapped_question,
            'question_id': question_id,
            'answer':      answer,
        }

class TUT2017Dataset(Dataset):

    audoi_formats = ['.wav', '.flac']

    def __init__(self, questions, processor):
        self.questions = questions
        self.processor = processor

    def __len__(self):
        return len(self.questions)
    
    def __getitem__(self, idx):
        sample = self.questions[idx]

        audio_path  = sample['audio']
        wrapped_question = f"Question: Identify the sound event in the audio.\nOptions:\n(A) beach\n(B) bus\n(C) cafe or restaurant\n(D) car\n(E) city center\n(F) forest path\n(G) grocery store\n(H) home\n(I) library\n(J) metro station\n(K) office\n(L) park\n(M) residential area\n(N) train\n(O) tram\n.Answer with the option's letter from the given choices directly and only give the best option."
        question_id = audio_path.split("/")[-1]
        answer      = sample['gt']

        audio_tensor = self.processor(audio_path)

        return {
            'audio':       audio_tensor,
            'audio_name':  audio_path.split("/")[-1],
            'question':    wrapped_question,
            'question_id': question_id,
            'answer':      answer,
        }

class VocalSoundDataset(Dataset):

    audoi_formats = ['.wav', '.flac']

    def __init__(self, questions, processor):
        self.questions = questions
        self.processor = processor

    def __len__(self):
        return len(self.questions)
    
    def __getitem__(self, idx):
        sample = self.questions[idx]

        audio_path  = sample['audio']
        wrapped_question = f"Identify the human sound in the audio.\nOptions:\n(A) Laughter\n(B) Sigh\n(C) Cough\n(D) Throat clearing\n(E) Sneeze\n(F) Sniff\n.Answer with the option's letter from the given choices directly and only give the best option."
        question_id = audio_path.split("/")[-1]
        answer      = sample['gt']

        audio_tensor = self.processor(audio_path)

        return {
            'audio':       audio_tensor,
            'audio_name':  audio_path.split("/")[-1],
            'question':    wrapped_question,
            'question_id': question_id,
            'answer':      answer,
        }

class AIRDataset(Dataset):

    audoi_formats = ['.wav', '.flac']

    def __init__(self, questions, processor):
        self.questions = questions
        self.processor = processor

    def __len__(self):
        return len(self.questions)
    
    def __getitem__(self, idx):
        sample = self.questions[idx]

        audio_path = sample['audio']
        wrapped_question = sample['query']
        question_id = sample['id']
        answer = sample['answer']

        audio_tensor = self.processor(audio_path)

        return {
            'audio':       audio_tensor,
            'audio_name':  audio_path.split("/")[-1],
            'question':    wrapped_question,
            'question_id': question_id,
            'answer':      answer,
        }


def collate_fn(batch):
    vid  = [x['audio'] for x in batch]
    v_id = [x['audio_name'] for x in batch]
    qus  = [x['question'] for x in batch]
    qid  = [x['question_id'] for x in batch]
    ans  = [x['answer'] for x in batch]
    return vid, v_id, qus, qid, ans


def run_inference(args):
    disable_torch_init()

    # Initialize the model
    model, processor, tokenizer = model_init(args.model_path)
    model.model.vision_tower = None

    assert args.batch_size == 1, "Batch size must be 1 for inference"
    if args.dataset == "clothoAQA":
        gt_questions = json.load(open(args.question_file, "r"))
        gt_questions = get_chunk(gt_questions, args.num_chunks, args.chunk_idx)
        dataset = ClothoAQADataset(gt_questions, processor['audio'])
    elif args.dataset == "clotho":
        import csv
        gt_questions = []
        with open(args.question_file, mode='r', encoding='utf-8') as file:
            reader = csv.reader(file)
            header = next(reader) # remove header
            for row in reader:
                gt_questions.append({
                    "audio": os.path.join(args.video_folder, row[0]),
                    "captions": row[1:]
                })
        gt_questions = get_chunk(gt_questions, args.num_chunks, args.chunk_idx)
        dataset = ClothoDataset(gt_questions, processor['audio'])
    elif args.dataset == "TUT2017":
        gt_questions = []
        with open(args.question_file, "r") as fp:
            for x in fp.readlines():
                gt_questions.append(json.loads(x))
                gt_questions[-1]["audio"] = os.path.join(args.video_folder, gt_questions[-1]["audio"])
        gt_questions = get_chunk(gt_questions, args.num_chunks, args.chunk_idx)
        dataset = TUT2017Dataset(gt_questions, processor['audio'])
    elif args.dataset == "vocalsound":
        gt_questions = []
        with open(args.question_file, "r") as fp:
            for x in fp.readlines():
                gt_questions.append(json.loads(x))
                gt_questions[-1]["audio"] = os.path.join(args.video_folder, gt_questions[-1]["audio"].split("/")[-1])
        gt_questions = get_chunk(gt_questions, args.num_chunks, args.chunk_idx)
        dataset = VocalSoundDataset(gt_questions, processor['audio'])
    elif args.dataset == "AIR":
        gt_answer = {x["uniq_id"]: x for x in json.load(open(args.answer_file, "r"))}
        
        gt_questions = []
        with open(args.question_file, "r") as fp:
            for x in fp.readlines():
                gt_questions.append(json.loads(x))
                gt_questions[-1]["answer"] = gt_answer[gt_questions[-1]["id"]]["answer_gt"]
        gt_questions = get_chunk(gt_questions, args.num_chunks, args.chunk_idx)
        dataset = AIRDataset(gt_questions, processor['audio'])
    else:
        raise NotImplementedError

    dataloader = DataLoader(dataset, shuffle=False, batch_size=args.batch_size, num_workers=args.num_workers, collate_fn=collate_fn)

    answer_file = os.path.join(args.output_file)
    os.makedirs(os.path.dirname(args.output_file), exist_ok=True)
    ans_file = open(answer_file, "w")

    # Iterate over each sample in the ground truth file
    for i, (audio_tensors, audio_names, questions, question_ids, answers) in enumerate(tqdm(dataloader)):
        audio_tensor = audio_tensors[0]
        audio_name   = audio_names[0]
        question     = questions[0]
        question_id  = question_ids[0]
        answer       = answers[0]

        # question = question + '\n' + 'Answer the question using a single word or a short phrase with multiple words.'

        try:
            output = mm_infer(
                audio_tensor,
                question,
                model=model,
                tokenizer=tokenizer,
                modal='audio',
                do_sample=False,
            )
        except:
            traceback.print_exc()
            output = "error"

        sample_set = {'id': question_id, 'question': question, 'answer': answer, 'pred': output}
        ans_file.write(json.dumps(sample_set) + "\n")

    ans_file.close()


if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    parser.add_argument('--model-path', help='', required=True)
    parser.add_argument('--video-folder', help='Directory containing video files.', required=True)
    parser.add_argument('--question-file', help='Path to the ground truth file containing question.', required=True)
    parser.add_argument('--answer-file', help='Path to the ground truth file containing answers.', required=False)
    parser.add_argument('--output-file', help='Directory to save the model results JSON.', required=True)
    parser.add_argument("--num-chunks", type=int, default=1)
    parser.add_argument("--chunk-idx", type=int, default=0)
    parser.add_argument("--device", type=str, required=False, default='cuda:0')
    parser.add_argument("--batch-size", type=int, required=False, default=1)
    parser.add_argument("--num-workers", type=int, required=False, default=8)
    parser.add_argument("--dataset", type=str, required=True)
    args = parser.parse_args()

    run_inference(args)