File size: 19,569 Bytes
e52682b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
import ast
import os
import math
import base64
import traceback
from io import BytesIO

import cv2
import torch
import imageio
import numpy as np
from PIL import Image
from decord import VideoReader, cpu
from moviepy.editor import VideoFileClip
from transformers import StoppingCriteria

from .constants import NUM_FRAMES, MAX_FRAMES, NUM_FRAMES_PER_SECOND, MODAL_INDEX_MAP, DEFAULT_IMAGE_TOKEN
from moviepy.editor import VideoFileClip
import random
import librosa
import soundfile as sf
import torchaudio.compliance.kaldi as ta_kaldi
from subprocess import CalledProcessError, run, Popen, PIPE
import math
from pytorchvideo.data.clip_sampling import ConstantClipsPerVideoSampler

def chunk_list(input_list, chunk_size):
    return [input_list[i:i + chunk_size] for i in range(0, len(input_list), chunk_size)]


def load_image_from_base64(image):
    return Image.open(BytesIO(base64.b64decode(image)))


def expand2square(pil_img, background_color):
    width, height = pil_img.size
    if width == height:
        return pil_img
    elif width > height:
        result = Image.new(pil_img.mode, (width, width), background_color)
        result.paste(pil_img, (0, (width - height) // 2))
        return result
    else:
        result = Image.new(pil_img.mode, (height, height), background_color)
        result.paste(pil_img, ((height - width) // 2, 0))
        return result


def create_photo_grid(arr, rows=None, cols=None):
    """
    Create a photo grid from a 4D numpy array with shape [t, h, w, c].

    Parameters:
        arr (numpy.ndarray): Input array with shape [t, h, w, c].
        rows (int): Optional. Number of rows in the grid. If not set, it will be determined based on `cols` or the square root of `t`.
        cols (int): Optional. Number of columns in the grid. If not set, it will be determined based on `rows` or the square root of `t`.

    Returns:
        numpy.ndarray: A 3D numpy array representing the photo grid.
    """

    if isinstance(arr, list):
        if isinstance(arr[0], Image.Image):
            arr = np.stack([np.array(img) for img in arr])
        elif isinstance(arr[0], np.ndarray):
            arr = np.stack(arr)
        else:
            raise ValueError("Invalid input type. Expected list of Images or numpy arrays.")

    t, h, w, c = arr.shape
    
    # Calculate the number of rows and columns if not provided
    if rows is None and cols is None:
        rows = math.ceil(math.sqrt(t))
        cols = math.ceil(t / rows)
    elif rows is None:
        rows = math.ceil(t / cols)
    elif cols is None:
        cols = math.ceil(t / rows)

    # Check if the grid can hold all the images
    if rows * cols < t:
        raise ValueError(f"Not enough grid cells ({rows}x{cols}) to hold all images ({t}).")
    
    # Create the grid array with appropriate height and width
    grid_height = h * rows
    grid_width = w * cols
    grid = np.zeros((grid_height, grid_width, c), dtype=arr.dtype)
    
    # Fill the grid with images
    for i in range(t):
        row_idx = i // cols
        col_idx = i % cols
        grid[row_idx*h:(row_idx+1)*h, col_idx*w:(col_idx+1)*w, :] = arr[i]
    
    return grid


def process_image(image_path, processor, aspect_ratio='pad'):
    image = Image.open(image_path).convert('RGB')

    images = [np.array(image)]

    if aspect_ratio == 'pad':
        images = [Image.fromarray(f) for f in images]
        images = [expand2square(image, tuple(int(x*255) for x in processor.image_mean)) for image in images]
    else:
        images = [Image.fromarray(f) for f in images]

    images = processor.preprocess(images, return_tensors='pt')['pixel_values']
    return images


def frame_sample(duration, mode='uniform', num_frames=None, fps=None):
    if mode == 'uniform':
        assert num_frames is not None, "Number of frames must be provided for uniform sampling."
        # NOTE: v1 version
        # Calculate the size of each segment from which a frame will be extracted
        seg_size = float(duration - 1) / num_frames

        frame_ids = []
        for i in range(num_frames):
            # Calculate the start and end indices of each segment
            start = seg_size * i
            end   = seg_size * (i + 1)
            # Append the middle index of the segment to the list
            frame_ids.append((start + end) / 2)

        return np.round(np.array(frame_ids) + 1e-6).astype(int)
        # NOTE: v0 version
        # return np.linspace(0, duration-1, num_frames, dtype=int)
    elif mode == 'fps':
        assert fps is not None, "FPS must be provided for FPS sampling."
        segment_len = min(fps // NUM_FRAMES_PER_SECOND, duration)
        return np.arange(segment_len // 2, duration, segment_len, dtype=int)
    else:
        raise ImportError(f'Unsupported frame sampling mode: {mode}')


def process_audio_file(wav_path):
    # read wav
    #print(wav_path)
    wav, sr = sf.read(wav_path)
    if len(wav.shape) == 2:
        wav = wav[:, 0]
    if len(wav) > 30 * sr:
        max_start = len(wav) - 30 * sr
        start = random.randint(0, max_start)
        wav = wav[start: start + 30 * sr]
    if len(wav) < 30 * sr:
        pad_length = 30 * sr - len(wav)
        wav = np.pad(wav, (0, pad_length), mode='constant', constant_values=0.0)
    if sr != 16000:
        wav = librosa.resample(wav, orig_sr=sr, target_sr=16000, res_type="fft")

    # beats
    raw_wav = torch.from_numpy(wav).to('cpu')
    waveform = raw_wav.unsqueeze(0) * 2 ** 15
    fbank = ta_kaldi.fbank(waveform, num_mel_bins=128, sample_frequency=16000, frame_length=25, frame_shift=10).to(torch.bfloat16)
    return fbank.unsqueeze(0)

def get_clip_timepoints(clip_sampler, duration):
    # Read out all clips in this video
    all_clips_timepoints = []
    is_last_clip = False
    end = 0.0
    while not is_last_clip:
        start, end, _, _, is_last_clip = clip_sampler(end, duration, annotation=None)
        all_clips_timepoints.append((start, end))
    return all_clips_timepoints

def load_audio_from_video(file: str, sr: int = 16000):
    """
    Open an audio file and read as mono waveform, resampling as necessary

    Parameters
    ----------
    file: str
        The audio file to open

    sr: int
        The sample rate to resample the audio if necessary

    Returns
    -------
    A NumPy array containing the audio waveform, in float32 dtype.
    """

    # This launches a subprocess to decode audio while down-mixing
    # and resampling as necessary.  Requires the ffmpeg CLI in PATH.

    cmd = ["ffmpeg", "-nostdin", "-i", file, "-vn",  # no video
        "-acodec", "pcm_s16le",  # output audio codec (pcm_s16le for .wav)
        "-ac", "1",  # audio channels (1 for mono)
        "-ar", str(sr),  # audio sample rate
        "-f", "s16le",  # output format (s16le for 16-bit PCM)
        "-"  # output to stdout
        ]
    # fmt: on
    try:
        out = run(cmd, capture_output=True, check=True).stdout
    except CalledProcessError as e:
        raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e
    return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0, sr


def process_audio_from_video(audio_path, clip_duration, device="cpu", num_mel_bins=128, sample_rate=16000, clips_per_video=8, mean=-4.268, std=9.138):
    clip_sampler = ConstantClipsPerVideoSampler(
        clip_duration=2, clips_per_video=clips_per_video
    )
    try:
        waveform, sr = load_audio_from_video(audio_path)
        #print(audio_path)
    except Exception as audio_error:
        print(f"Failed to process audio from video due to error: {audio_error}")
        waveform = torch.zeros(480000)
        waveform = waveform.numpy()
        sr = 16000
    all_clips_timepoints = get_clip_timepoints(clip_sampler, waveform.shape[0] / sample_rate)
    all_clips = []
    #print(waveform.shape[0] / sample_rate)
    for clip_timepoints in all_clips_timepoints:
        #print(float(clip_timepoints[0]))
        #print(float(clip_timepoints[1]))
        waveform_clip = waveform[
            int(clip_timepoints[0] * sample_rate) : int(
                clip_timepoints[1] * sample_rate)]
        all_clips.append(waveform_clip)
    all_clips_tensors = [torch.from_numpy(clip) for clip in all_clips]
    wav = torch.cat(all_clips_tensors, dim=0)
    if len(wav) > 30 * sr:
        max_start = len(wav) - 30 * sr
        start = torch.randint(0, max_start, (1,)).item()
        wav = wav[start: start + 30 * sr]
    if len(wav) < 30 * sr:
        pad_length = 30 * sr - len(wav)
        wav = torch.nn.functional.pad(wav, (0, pad_length), mode='constant', value=0.0)
    waveform = wav.unsqueeze(0) * 2 ** 15
    fbank = ta_kaldi.fbank(waveform, num_mel_bins=128, sample_frequency=16000, frame_length=25, frame_shift=10).to(torch.bfloat16)
    return fbank.unsqueeze(0)


def process_video(video_path, processor, s=None, e=None, aspect_ratio='pad', num_frames=NUM_FRAMES, va=False):
    if isinstance(video_path, str):
        if s is not None and e is not None:
            s = s if s >= 0. else 0.
            e = e if e >= 0. else 0.
            if s > e:
                s, e = e, s
            elif s == e:
                e = s + 1

        # 1. Loading Video
        if os.path.isdir(video_path):                
            frame_files = sorted(os.listdir(video_path))

            fps = 3
            num_frames_of_video = len(frame_files)
        elif video_path.endswith('.gif'):
            gif_reader = imageio.get_reader(video_path)

            fps = 25
            num_frames_of_video = len(gif_reader)
        else:
            vreader = VideoReader(video_path, ctx=cpu(0), num_threads=1)

            fps = vreader.get_avg_fps()
            num_frames_of_video = len(vreader)

        # 2. Determine frame range & Calculate frame indices
        f_start = 0                       if s is None else max(int(s * fps) - 1, 0)
        f_end   = num_frames_of_video - 1 if e is None else min(int(e * fps) - 1, num_frames_of_video - 1)
        frame_indices = list(range(f_start, f_end + 1))

        duration = len(frame_indices)
        # 3. Sampling frame indices 
        if num_frames is None:
            sampled_frame_indices = [frame_indices[i] for i in frame_sample(duration, mode='fps', fps=fps)]
        else:
            sampled_frame_indices = [frame_indices[i] for i in frame_sample(duration, mode='uniform', num_frames=num_frames)]

        # 4. Acquire frame data
        if os.path.isdir(video_path): 
            video_data = [Image.open(os.path.join(video_path, frame_files[f_idx])) for f_idx in sampled_frame_indices]
        elif video_path.endswith('.gif'):
            video_data = [Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB)) for idx, frame in enumerate(gif_reader) if idx in sampled_frame_indices]
        else:
            video_data = [Image.fromarray(frame) for frame in vreader.get_batch(sampled_frame_indices).asnumpy()]

    elif isinstance(video_path, np.ndarray):
        video_data = [Image.fromarray(f) for f in video_path]
    elif isinstance(video_path, list) and isinstance(video_path[0], np.ndarray):
        video_data = [Image.fromarray(f) for f in video_path]
    elif isinstance(video_path, list) and isinstance(video_path[0], str):
        video_data = [Image.open(f) for f in video_path]
    elif isinstance(video_path, list) and isinstance(video_path[0], Image.Image):
        video_data = video_path
    else:
        raise ValueError(f"Unsupported video path type: {type(video_path)}")

    while num_frames is not None and len(video_data) < num_frames:
        video_data.append(Image.fromarray(np.zeros((*video_data[-1].size, 3), dtype=np.uint8)))

    # MAX_FRAMES filter
    video_data = video_data[:MAX_FRAMES]

    if aspect_ratio == 'pad':
        images = [expand2square(f, tuple(int(x*255) for x in processor.image_mean)) for f in video_data]
        video = processor.preprocess(images, return_tensors='pt')['pixel_values']
    else:
        images = [f for f in video_data]
        video = processor.preprocess(images, return_tensors='pt')['pixel_values']

    if va:
        # Calculate the duration of the video in seconds
        video_duration_seconds = num_frames_of_video / fps
        audio = process_audio_from_video(video_path, video_duration_seconds)
        video = {'video': video, 'audio': audio}
        
    return video

def process_video_old(video_path, processor, aspect_ratio='pad', num_frames=NUM_FRAMES, image_grid=False, sample_scheme='uniform'):
    def frame_sample(duration, mode='uniform', local_fps=None):
        if mode == 'uniform':
            # Calculate the size of each segment from which a frame will be extracted
            seg_size = float(duration - 1) / num_frames

            frame_ids = []
            for i in range(num_frames):
                # Calculate the start and end indices of each segment
                start = int(np.round(seg_size * i))
                end = int(np.round(seg_size * (i + 1)))
                # Append the middle index of the segment to the list
                frame_ids.append((start + end) // 2)

            return frame_ids
            # NOTE: old version
            # return np.linspace(0, duration-1, num_frames, dtype=int)
        elif mode == 'fps':
            assert local_fps is not None
            segment_len = min(local_fps // NUM_FRAMES_PER_SECOND, duration)
            return np.arange(segment_len // 2, duration, segment_len, dtype=int)
        else:
            raise ImportError(f'Unsupported frame sampling mode: {mode}')

    if isinstance(video_path, str):
        if video_path.endswith('.gif'):
            video_gif = imageio.get_reader(video_path)
            duration, local_fps = len(video_gif), 10

            frame_id_list = frame_sample(duration, mode=sample_scheme, local_fps=local_fps)
            # limit the max input frames
            if len(frame_id_list) > MAX_FRAMES:
                frame_id_list = np.linspace(0, duration-1, MAX_FRAMES, dtype=int)
            video_data = [frame for index, frame in enumerate(video_gif) if index in frame_id_list]
        # added by lixin4ever, include the support of .webm files from sthsthv2
        elif video_path.endswith('.webm'):
            video_webm = VideoFileClip(video_path)
            video_frames = np.array(list(video_webm.iter_frames()))

            duration, local_fps = len(video_frames), video_webm.fps

            frame_id_list = frame_sample(duration, mode=sample_scheme, local_fps=local_fps)
            # limit the max input frames
            if len(frame_id_list) > MAX_FRAMES:
                frame_id_list = np.linspace(0, duration-1, MAX_FRAMES, dtype=int)
            video_data = video_frames[frame_id_list]
        else:
            # NOTE: num_threads=1 is required to avoid deadlock in multiprocessing
            decord_vr = VideoReader(uri=video_path, ctx=cpu(0), num_threads=1) 
            duration, local_fps = len(decord_vr), float(decord_vr.get_avg_fps())
        
            frame_id_list = frame_sample(duration, mode=sample_scheme, local_fps=local_fps)
            # limit the max input frames
            if len(frame_id_list) > MAX_FRAMES:
                frame_id_list = np.linspace(0, duration-1, MAX_FRAMES, dtype=int)
            try:
                video_data = decord_vr.get_batch(frame_id_list).numpy()
            except:
                video_data = decord_vr.get_batch(frame_id_list).asnumpy()

    elif isinstance(video_path, np.ndarray):
        assert len(video_path) == num_frames
        video_data = video_path
    elif isinstance(video_path, list):
        assert len(video_path) == num_frames
        video_data = np.stack([np.array(x) for x in video_path])

    if image_grid:
        grid_h = grid_w = math.ceil(math.sqrt(num_frames))
        pg = create_photo_grid(video_data, grid_h, grid_w)
        video_data = [pg, *video_data]

    if aspect_ratio == 'pad':
        images = [Image.fromarray(f.numpy() if isinstance(f, torch.Tensor) else f) for f in video_data]
        images = [expand2square(image, tuple(int(x*255) for x in processor.image_mean)) for image in images]
        video = processor.preprocess(images, return_tensors='pt')['pixel_values']
    else:
        images = [Image.fromarray(f.numpy() if isinstance(f, torch.Tensor) else f) for f in video_data]
        video = processor.preprocess(images, return_tensors='pt')['pixel_values']

    return video


def tokenizer_multimodal_token(prompt, tokenizer, multimodal_token=DEFAULT_IMAGE_TOKEN, return_tensors=None):
    """Tokenize text and multimodal tag to input_ids.

    Args:
        prompt (str): Text prompt (w/ multimodal tag), e.g., '<video>\nDescribe the video.'
        tokenizer (transformers.PreTrainedTokenizer): Tokenizer object.
        multimodal_token (int): Token index corresponding to the multimodal tag.
    """
    multimodal_token_index = MODAL_INDEX_MAP.get(multimodal_token, None)
    if multimodal_token_index is None:
        input_ids = tokenizer(prompt, add_special_tokens=False).input_ids
    else:
        prompt_chunks = [tokenizer(chunk, add_special_tokens=False).input_ids for idx, chunk in enumerate(prompt.split(multimodal_token))]

        input_ids = []
        for i in range(1, 2 * len(prompt_chunks)):
            if i % 2 == 1:
                input_ids.extend(prompt_chunks[i // 2])
            else:
                input_ids.append(multimodal_token_index)

    if return_tensors is not None:
        if return_tensors == 'pt':
            return torch.tensor(input_ids, dtype=torch.long)
        raise ValueError(f'Unsupported tensor type: {return_tensors}')
    return input_ids


def get_model_name_from_path(model_path):
    model_path = model_path.strip("/")
    model_paths = model_path.split("/")
    if model_paths[-1].startswith('checkpoint-'):
        return model_paths[-2] + "_" + model_paths[-1]
    else:
        return model_paths[-1]


class KeywordsStoppingCriteria(StoppingCriteria):
    def __init__(self, keywords, tokenizer, input_ids):
        self.keywords = keywords
        self.keyword_ids = []
        self.max_keyword_len = 0
        for keyword in keywords:
            cur_keyword_ids = tokenizer(keyword).input_ids
            if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id:
                cur_keyword_ids = cur_keyword_ids[1:]
            if len(cur_keyword_ids) > self.max_keyword_len:
                self.max_keyword_len = len(cur_keyword_ids)
            self.keyword_ids.append(torch.tensor(cur_keyword_ids))
        self.tokenizer = tokenizer
        self.start_len = input_ids.shape[1]
    
    def call_for_batch(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
        offset = min(output_ids.shape[1] - self.start_len, self.max_keyword_len)
        self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids]
        for keyword_id in self.keyword_ids:
            if (output_ids[0, -keyword_id.shape[0]:] == keyword_id).all():
                return True
        outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0]
        for keyword in self.keywords:
            if keyword in outputs:
                return True
        return False
    
    def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
        outputs = []
        for i in range(output_ids.shape[0]):
            outputs.append(self.call_for_batch(output_ids[i].unsqueeze(0), scores))
        return all(outputs)