Spaces:
Running
on
Zero
Running
on
Zero
import ast | |
import os | |
import math | |
import base64 | |
import traceback | |
from io import BytesIO | |
import cv2 | |
import torch | |
import imageio | |
import numpy as np | |
from PIL import Image | |
from decord import VideoReader, cpu | |
from moviepy.editor import VideoFileClip | |
from transformers import StoppingCriteria | |
from .constants import NUM_FRAMES, MAX_FRAMES, NUM_FRAMES_PER_SECOND, MODAL_INDEX_MAP, DEFAULT_IMAGE_TOKEN | |
from moviepy.editor import VideoFileClip | |
import random | |
import librosa | |
import soundfile as sf | |
import torchaudio.compliance.kaldi as ta_kaldi | |
from subprocess import CalledProcessError, run, Popen, PIPE | |
import math | |
from pytorchvideo.data.clip_sampling import ConstantClipsPerVideoSampler | |
def chunk_list(input_list, chunk_size): | |
return [input_list[i:i + chunk_size] for i in range(0, len(input_list), chunk_size)] | |
def load_image_from_base64(image): | |
return Image.open(BytesIO(base64.b64decode(image))) | |
def expand2square(pil_img, background_color): | |
width, height = pil_img.size | |
if width == height: | |
return pil_img | |
elif width > height: | |
result = Image.new(pil_img.mode, (width, width), background_color) | |
result.paste(pil_img, (0, (width - height) // 2)) | |
return result | |
else: | |
result = Image.new(pil_img.mode, (height, height), background_color) | |
result.paste(pil_img, ((height - width) // 2, 0)) | |
return result | |
def create_photo_grid(arr, rows=None, cols=None): | |
""" | |
Create a photo grid from a 4D numpy array with shape [t, h, w, c]. | |
Parameters: | |
arr (numpy.ndarray): Input array with shape [t, h, w, c]. | |
rows (int): Optional. Number of rows in the grid. If not set, it will be determined based on `cols` or the square root of `t`. | |
cols (int): Optional. Number of columns in the grid. If not set, it will be determined based on `rows` or the square root of `t`. | |
Returns: | |
numpy.ndarray: A 3D numpy array representing the photo grid. | |
""" | |
if isinstance(arr, list): | |
if isinstance(arr[0], Image.Image): | |
arr = np.stack([np.array(img) for img in arr]) | |
elif isinstance(arr[0], np.ndarray): | |
arr = np.stack(arr) | |
else: | |
raise ValueError("Invalid input type. Expected list of Images or numpy arrays.") | |
t, h, w, c = arr.shape | |
# Calculate the number of rows and columns if not provided | |
if rows is None and cols is None: | |
rows = math.ceil(math.sqrt(t)) | |
cols = math.ceil(t / rows) | |
elif rows is None: | |
rows = math.ceil(t / cols) | |
elif cols is None: | |
cols = math.ceil(t / rows) | |
# Check if the grid can hold all the images | |
if rows * cols < t: | |
raise ValueError(f"Not enough grid cells ({rows}x{cols}) to hold all images ({t}).") | |
# Create the grid array with appropriate height and width | |
grid_height = h * rows | |
grid_width = w * cols | |
grid = np.zeros((grid_height, grid_width, c), dtype=arr.dtype) | |
# Fill the grid with images | |
for i in range(t): | |
row_idx = i // cols | |
col_idx = i % cols | |
grid[row_idx*h:(row_idx+1)*h, col_idx*w:(col_idx+1)*w, :] = arr[i] | |
return grid | |
def process_image(image_path, processor, aspect_ratio='pad'): | |
image = Image.open(image_path).convert('RGB') | |
images = [np.array(image)] | |
if aspect_ratio == 'pad': | |
images = [Image.fromarray(f) for f in images] | |
images = [expand2square(image, tuple(int(x*255) for x in processor.image_mean)) for image in images] | |
else: | |
images = [Image.fromarray(f) for f in images] | |
images = processor.preprocess(images, return_tensors='pt')['pixel_values'] | |
return images | |
def frame_sample(duration, mode='uniform', num_frames=None, fps=None): | |
if mode == 'uniform': | |
assert num_frames is not None, "Number of frames must be provided for uniform sampling." | |
# NOTE: v1 version | |
# Calculate the size of each segment from which a frame will be extracted | |
seg_size = float(duration - 1) / num_frames | |
frame_ids = [] | |
for i in range(num_frames): | |
# Calculate the start and end indices of each segment | |
start = seg_size * i | |
end = seg_size * (i + 1) | |
# Append the middle index of the segment to the list | |
frame_ids.append((start + end) / 2) | |
return np.round(np.array(frame_ids) + 1e-6).astype(int) | |
# NOTE: v0 version | |
# return np.linspace(0, duration-1, num_frames, dtype=int) | |
elif mode == 'fps': | |
assert fps is not None, "FPS must be provided for FPS sampling." | |
segment_len = min(fps // NUM_FRAMES_PER_SECOND, duration) | |
return np.arange(segment_len // 2, duration, segment_len, dtype=int) | |
else: | |
raise ImportError(f'Unsupported frame sampling mode: {mode}') | |
def process_audio_file(wav_path): | |
# read wav | |
#print(wav_path) | |
wav, sr = sf.read(wav_path) | |
if len(wav.shape) == 2: | |
wav = wav[:, 0] | |
if len(wav) > 30 * sr: | |
max_start = len(wav) - 30 * sr | |
start = random.randint(0, max_start) | |
wav = wav[start: start + 30 * sr] | |
if len(wav) < 30 * sr: | |
pad_length = 30 * sr - len(wav) | |
wav = np.pad(wav, (0, pad_length), mode='constant', constant_values=0.0) | |
if sr != 16000: | |
wav = librosa.resample(wav, orig_sr=sr, target_sr=16000, res_type="fft") | |
# beats | |
raw_wav = torch.from_numpy(wav).to('cpu') | |
waveform = raw_wav.unsqueeze(0) * 2 ** 15 | |
fbank = ta_kaldi.fbank(waveform, num_mel_bins=128, sample_frequency=16000, frame_length=25, frame_shift=10).to(torch.bfloat16) | |
return fbank.unsqueeze(0) | |
def get_clip_timepoints(clip_sampler, duration): | |
# Read out all clips in this video | |
all_clips_timepoints = [] | |
is_last_clip = False | |
end = 0.0 | |
while not is_last_clip: | |
start, end, _, _, is_last_clip = clip_sampler(end, duration, annotation=None) | |
all_clips_timepoints.append((start, end)) | |
return all_clips_timepoints | |
def load_audio_from_video(file: str, sr: int = 16000): | |
""" | |
Open an audio file and read as mono waveform, resampling as necessary | |
Parameters | |
---------- | |
file: str | |
The audio file to open | |
sr: int | |
The sample rate to resample the audio if necessary | |
Returns | |
------- | |
A NumPy array containing the audio waveform, in float32 dtype. | |
""" | |
# This launches a subprocess to decode audio while down-mixing | |
# and resampling as necessary. Requires the ffmpeg CLI in PATH. | |
cmd = ["ffmpeg", "-nostdin", "-i", file, "-vn", # no video | |
"-acodec", "pcm_s16le", # output audio codec (pcm_s16le for .wav) | |
"-ac", "1", # audio channels (1 for mono) | |
"-ar", str(sr), # audio sample rate | |
"-f", "s16le", # output format (s16le for 16-bit PCM) | |
"-" # output to stdout | |
] | |
# fmt: on | |
try: | |
out = run(cmd, capture_output=True, check=True).stdout | |
except CalledProcessError as e: | |
raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e | |
return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0, sr | |
def process_audio_from_video(audio_path, clip_duration, device="cpu", num_mel_bins=128, sample_rate=16000, clips_per_video=8, mean=-4.268, std=9.138): | |
clip_sampler = ConstantClipsPerVideoSampler( | |
clip_duration=2, clips_per_video=clips_per_video | |
) | |
try: | |
waveform, sr = load_audio_from_video(audio_path) | |
#print(audio_path) | |
except Exception as audio_error: | |
print(f"Failed to process audio from video due to error: {audio_error}") | |
waveform = torch.zeros(480000) | |
waveform = waveform.numpy() | |
sr = 16000 | |
all_clips_timepoints = get_clip_timepoints(clip_sampler, waveform.shape[0] / sample_rate) | |
all_clips = [] | |
#print(waveform.shape[0] / sample_rate) | |
for clip_timepoints in all_clips_timepoints: | |
#print(float(clip_timepoints[0])) | |
#print(float(clip_timepoints[1])) | |
waveform_clip = waveform[ | |
int(clip_timepoints[0] * sample_rate) : int( | |
clip_timepoints[1] * sample_rate)] | |
all_clips.append(waveform_clip) | |
all_clips_tensors = [torch.from_numpy(clip) for clip in all_clips] | |
wav = torch.cat(all_clips_tensors, dim=0) | |
if len(wav) > 30 * sr: | |
max_start = len(wav) - 30 * sr | |
start = torch.randint(0, max_start, (1,)).item() | |
wav = wav[start: start + 30 * sr] | |
if len(wav) < 30 * sr: | |
pad_length = 30 * sr - len(wav) | |
wav = torch.nn.functional.pad(wav, (0, pad_length), mode='constant', value=0.0) | |
waveform = wav.unsqueeze(0) * 2 ** 15 | |
fbank = ta_kaldi.fbank(waveform, num_mel_bins=128, sample_frequency=16000, frame_length=25, frame_shift=10).to(torch.bfloat16) | |
return fbank.unsqueeze(0) | |
def process_video(video_path, processor, s=None, e=None, aspect_ratio='pad', num_frames=NUM_FRAMES, va=False): | |
if isinstance(video_path, str): | |
if s is not None and e is not None: | |
s = s if s >= 0. else 0. | |
e = e if e >= 0. else 0. | |
if s > e: | |
s, e = e, s | |
elif s == e: | |
e = s + 1 | |
# 1. Loading Video | |
if os.path.isdir(video_path): | |
frame_files = sorted(os.listdir(video_path)) | |
fps = 3 | |
num_frames_of_video = len(frame_files) | |
elif video_path.endswith('.gif'): | |
gif_reader = imageio.get_reader(video_path) | |
fps = 25 | |
num_frames_of_video = len(gif_reader) | |
else: | |
vreader = VideoReader(video_path, ctx=cpu(0), num_threads=1) | |
fps = vreader.get_avg_fps() | |
num_frames_of_video = len(vreader) | |
# 2. Determine frame range & Calculate frame indices | |
f_start = 0 if s is None else max(int(s * fps) - 1, 0) | |
f_end = num_frames_of_video - 1 if e is None else min(int(e * fps) - 1, num_frames_of_video - 1) | |
frame_indices = list(range(f_start, f_end + 1)) | |
duration = len(frame_indices) | |
# 3. Sampling frame indices | |
if num_frames is None: | |
sampled_frame_indices = [frame_indices[i] for i in frame_sample(duration, mode='fps', fps=fps)] | |
else: | |
sampled_frame_indices = [frame_indices[i] for i in frame_sample(duration, mode='uniform', num_frames=num_frames)] | |
# 4. Acquire frame data | |
if os.path.isdir(video_path): | |
video_data = [Image.open(os.path.join(video_path, frame_files[f_idx])) for f_idx in sampled_frame_indices] | |
elif video_path.endswith('.gif'): | |
video_data = [Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB)) for idx, frame in enumerate(gif_reader) if idx in sampled_frame_indices] | |
else: | |
video_data = [Image.fromarray(frame) for frame in vreader.get_batch(sampled_frame_indices).asnumpy()] | |
elif isinstance(video_path, np.ndarray): | |
video_data = [Image.fromarray(f) for f in video_path] | |
elif isinstance(video_path, list) and isinstance(video_path[0], np.ndarray): | |
video_data = [Image.fromarray(f) for f in video_path] | |
elif isinstance(video_path, list) and isinstance(video_path[0], str): | |
video_data = [Image.open(f) for f in video_path] | |
elif isinstance(video_path, list) and isinstance(video_path[0], Image.Image): | |
video_data = video_path | |
else: | |
raise ValueError(f"Unsupported video path type: {type(video_path)}") | |
while num_frames is not None and len(video_data) < num_frames: | |
video_data.append(Image.fromarray(np.zeros((*video_data[-1].size, 3), dtype=np.uint8))) | |
# MAX_FRAMES filter | |
video_data = video_data[:MAX_FRAMES] | |
if aspect_ratio == 'pad': | |
images = [expand2square(f, tuple(int(x*255) for x in processor.image_mean)) for f in video_data] | |
video = processor.preprocess(images, return_tensors='pt')['pixel_values'] | |
else: | |
images = [f for f in video_data] | |
video = processor.preprocess(images, return_tensors='pt')['pixel_values'] | |
if va: | |
# Calculate the duration of the video in seconds | |
video_duration_seconds = num_frames_of_video / fps | |
audio = process_audio_from_video(video_path, video_duration_seconds) | |
video = {'video': video, 'audio': audio} | |
return video | |
def process_video_old(video_path, processor, aspect_ratio='pad', num_frames=NUM_FRAMES, image_grid=False, sample_scheme='uniform'): | |
def frame_sample(duration, mode='uniform', local_fps=None): | |
if mode == 'uniform': | |
# Calculate the size of each segment from which a frame will be extracted | |
seg_size = float(duration - 1) / num_frames | |
frame_ids = [] | |
for i in range(num_frames): | |
# Calculate the start and end indices of each segment | |
start = int(np.round(seg_size * i)) | |
end = int(np.round(seg_size * (i + 1))) | |
# Append the middle index of the segment to the list | |
frame_ids.append((start + end) // 2) | |
return frame_ids | |
# NOTE: old version | |
# return np.linspace(0, duration-1, num_frames, dtype=int) | |
elif mode == 'fps': | |
assert local_fps is not None | |
segment_len = min(local_fps // NUM_FRAMES_PER_SECOND, duration) | |
return np.arange(segment_len // 2, duration, segment_len, dtype=int) | |
else: | |
raise ImportError(f'Unsupported frame sampling mode: {mode}') | |
if isinstance(video_path, str): | |
if video_path.endswith('.gif'): | |
video_gif = imageio.get_reader(video_path) | |
duration, local_fps = len(video_gif), 10 | |
frame_id_list = frame_sample(duration, mode=sample_scheme, local_fps=local_fps) | |
# limit the max input frames | |
if len(frame_id_list) > MAX_FRAMES: | |
frame_id_list = np.linspace(0, duration-1, MAX_FRAMES, dtype=int) | |
video_data = [frame for index, frame in enumerate(video_gif) if index in frame_id_list] | |
# added by lixin4ever, include the support of .webm files from sthsthv2 | |
elif video_path.endswith('.webm'): | |
video_webm = VideoFileClip(video_path) | |
video_frames = np.array(list(video_webm.iter_frames())) | |
duration, local_fps = len(video_frames), video_webm.fps | |
frame_id_list = frame_sample(duration, mode=sample_scheme, local_fps=local_fps) | |
# limit the max input frames | |
if len(frame_id_list) > MAX_FRAMES: | |
frame_id_list = np.linspace(0, duration-1, MAX_FRAMES, dtype=int) | |
video_data = video_frames[frame_id_list] | |
else: | |
# NOTE: num_threads=1 is required to avoid deadlock in multiprocessing | |
decord_vr = VideoReader(uri=video_path, ctx=cpu(0), num_threads=1) | |
duration, local_fps = len(decord_vr), float(decord_vr.get_avg_fps()) | |
frame_id_list = frame_sample(duration, mode=sample_scheme, local_fps=local_fps) | |
# limit the max input frames | |
if len(frame_id_list) > MAX_FRAMES: | |
frame_id_list = np.linspace(0, duration-1, MAX_FRAMES, dtype=int) | |
try: | |
video_data = decord_vr.get_batch(frame_id_list).numpy() | |
except: | |
video_data = decord_vr.get_batch(frame_id_list).asnumpy() | |
elif isinstance(video_path, np.ndarray): | |
assert len(video_path) == num_frames | |
video_data = video_path | |
elif isinstance(video_path, list): | |
assert len(video_path) == num_frames | |
video_data = np.stack([np.array(x) for x in video_path]) | |
if image_grid: | |
grid_h = grid_w = math.ceil(math.sqrt(num_frames)) | |
pg = create_photo_grid(video_data, grid_h, grid_w) | |
video_data = [pg, *video_data] | |
if aspect_ratio == 'pad': | |
images = [Image.fromarray(f.numpy() if isinstance(f, torch.Tensor) else f) for f in video_data] | |
images = [expand2square(image, tuple(int(x*255) for x in processor.image_mean)) for image in images] | |
video = processor.preprocess(images, return_tensors='pt')['pixel_values'] | |
else: | |
images = [Image.fromarray(f.numpy() if isinstance(f, torch.Tensor) else f) for f in video_data] | |
video = processor.preprocess(images, return_tensors='pt')['pixel_values'] | |
return video | |
def tokenizer_multimodal_token(prompt, tokenizer, multimodal_token=DEFAULT_IMAGE_TOKEN, return_tensors=None): | |
"""Tokenize text and multimodal tag to input_ids. | |
Args: | |
prompt (str): Text prompt (w/ multimodal tag), e.g., '<video>\nDescribe the video.' | |
tokenizer (transformers.PreTrainedTokenizer): Tokenizer object. | |
multimodal_token (int): Token index corresponding to the multimodal tag. | |
""" | |
multimodal_token_index = MODAL_INDEX_MAP.get(multimodal_token, None) | |
if multimodal_token_index is None: | |
input_ids = tokenizer(prompt, add_special_tokens=False).input_ids | |
else: | |
prompt_chunks = [tokenizer(chunk, add_special_tokens=False).input_ids for idx, chunk in enumerate(prompt.split(multimodal_token))] | |
input_ids = [] | |
for i in range(1, 2 * len(prompt_chunks)): | |
if i % 2 == 1: | |
input_ids.extend(prompt_chunks[i // 2]) | |
else: | |
input_ids.append(multimodal_token_index) | |
if return_tensors is not None: | |
if return_tensors == 'pt': | |
return torch.tensor(input_ids, dtype=torch.long) | |
raise ValueError(f'Unsupported tensor type: {return_tensors}') | |
return input_ids | |
def get_model_name_from_path(model_path): | |
model_path = model_path.strip("/") | |
model_paths = model_path.split("/") | |
if model_paths[-1].startswith('checkpoint-'): | |
return model_paths[-2] + "_" + model_paths[-1] | |
else: | |
return model_paths[-1] | |
class KeywordsStoppingCriteria(StoppingCriteria): | |
def __init__(self, keywords, tokenizer, input_ids): | |
self.keywords = keywords | |
self.keyword_ids = [] | |
self.max_keyword_len = 0 | |
for keyword in keywords: | |
cur_keyword_ids = tokenizer(keyword).input_ids | |
if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id: | |
cur_keyword_ids = cur_keyword_ids[1:] | |
if len(cur_keyword_ids) > self.max_keyword_len: | |
self.max_keyword_len = len(cur_keyword_ids) | |
self.keyword_ids.append(torch.tensor(cur_keyword_ids)) | |
self.tokenizer = tokenizer | |
self.start_len = input_ids.shape[1] | |
def call_for_batch(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: | |
offset = min(output_ids.shape[1] - self.start_len, self.max_keyword_len) | |
self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids] | |
for keyword_id in self.keyword_ids: | |
if (output_ids[0, -keyword_id.shape[0]:] == keyword_id).all(): | |
return True | |
outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0] | |
for keyword in self.keywords: | |
if keyword in outputs: | |
return True | |
return False | |
def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: | |
outputs = [] | |
for i in range(output_ids.shape[0]): | |
outputs.append(self.call_for_batch(output_ids[i].unsqueeze(0), scores)) | |
return all(outputs) | |