Spaces:
Running
on
Zero
Running
on
Zero
# Adopted from: https://github.com/haotian-liu/LLaVA. Below is the original copyright: | |
# Copyright 2023 Haotian Liu | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import List, Optional, Tuple, Union | |
import torch | |
import torch.nn as nn | |
from torch.nn import CrossEntropyLoss | |
from transformers import AutoConfig, AutoModelForCausalLM, \ | |
Gemma2Config, Gemma2Model, Gemma2ForCausalLM | |
from transformers.modeling_outputs import CausalLMOutputWithPast | |
from transformers.generation.utils import GenerateOutput | |
from .videollama2_arch import Videollama2MetaModel, Videollama2MetaForCausalLM | |
class Videollama2Gemma2Config(Gemma2Config): | |
model_type = "videollama2_gemma2" | |
def __init__(self, **kwargs): | |
super().__init__(**kwargs) | |
self.model_type = "videollama2_gemma2" | |
class Videollama2Gemma2Model(Videollama2MetaModel, Gemma2Model): | |
config_class = Videollama2Gemma2Config | |
def __init__(self, config: Gemma2Config): | |
super(Videollama2Gemma2Model, self).__init__(config) | |
class Videollama2Gemma2ForCausalLM(Gemma2ForCausalLM, Videollama2MetaForCausalLM): | |
config_class = Videollama2Gemma2Config | |
def __init__(self, config, **kwargs): | |
super(Gemma2ForCausalLM, self).__init__(config) | |
self.model = Videollama2Gemma2Model(config) | |
# self.pretraining_tp = config.pretraining_tp | |
self.vocab_size = config.vocab_size | |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_model(self): | |
return self.model | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
images: Optional[torch.FloatTensor] = None, | |
return_dict: Optional[bool] = None, | |
cache_position: Optional[int] = None, | |
**kwargs | |
) -> Union[Tuple, CausalLMOutputWithPast]: | |
if inputs_embeds is None: | |
( | |
input_ids, | |
attention_mask, | |
past_key_values, | |
inputs_embeds, | |
labels | |
) = self.prepare_inputs_labels_for_multimodal( | |
input_ids, | |
attention_mask, | |
past_key_values, | |
labels, | |
images | |
) | |
outputs = super().forward( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
labels=labels, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
cache_position=cache_position, | |
) | |
outputs.labels = labels | |
return outputs | |
def generate( | |
self, | |
inputs: Optional[torch.Tensor] = None, | |
images: Optional[torch.Tensor] = None, | |
**kwargs, | |
) -> Union[GenerateOutput, torch.LongTensor]: | |
position_ids = kwargs.pop("position_ids", None) | |
attention_mask = kwargs.pop("attention_mask", None) | |
if "inputs_embeds" in kwargs: | |
raise NotImplementedError("`inputs_embeds` is not supported") | |
if images is not None: | |
( | |
input_ids, | |
attention_mask, | |
past_key_values, | |
inputs_embeds, | |
_ | |
) = self.prepare_inputs_labels_for_multimodal( | |
input_ids=inputs, | |
attention_mask=attention_mask, | |
past_key_values=None, | |
labels=None, | |
images=images | |
) | |
else: | |
inputs_embeds = self.get_model().embed_tokens(inputs) | |
return super().generate( | |
position_ids=position_ids, | |
attention_mask=attention_mask, | |
inputs_embeds=inputs_embeds, | |
**kwargs | |
) | |
def _prepare_generated_length(self, model_input_name, inputs_tensor, **kwargs): | |
if model_input_name == "inputs_embeds": | |
self.inputs_embeds_length = inputs_tensor.size(1) | |
else: | |
self.inputs_embeds_length = 0 | |
return super()._prepare_generated_length( | |
model_input_name=model_input_name, | |
inputs_tensor=inputs_tensor, | |
**kwargs) | |
def _get_cache(self, cache_implementation: str, max_batch_size: int, max_cache_len: int, **kwargs): | |
return super()._get_cache( | |
cache_implementation=cache_implementation, | |
max_batch_size=max_batch_size, | |
max_cache_len=max_cache_len + self.inputs_embeds_length, | |
**kwargs) | |
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs): | |
images = kwargs.pop("images", None) | |
_inputs = super().prepare_inputs_for_generation( | |
input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs | |
) | |
if images is not None: | |
_inputs['images'] = images | |
return _inputs | |
AutoConfig.register("videollama2_gemma2", Videollama2Gemma2Config) | |
AutoModelForCausalLM.register(Videollama2Gemma2Config, Videollama2Gemma2ForCausalLM) | |