# Adopted from: https://github.com/haotian-liu/LLaVA. Below is the original copyright: # Copyright 2023 Haotian Liu # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List, Optional, Tuple, Union import torch import torch.nn as nn from torch.nn import CrossEntropyLoss from transformers import AutoConfig, AutoModelForCausalLM, \ Gemma2Config, Gemma2Model, Gemma2ForCausalLM from transformers.modeling_outputs import CausalLMOutputWithPast from transformers.generation.utils import GenerateOutput from .videollama2_arch import Videollama2MetaModel, Videollama2MetaForCausalLM class Videollama2Gemma2Config(Gemma2Config): model_type = "videollama2_gemma2" def __init__(self, **kwargs): super().__init__(**kwargs) self.model_type = "videollama2_gemma2" class Videollama2Gemma2Model(Videollama2MetaModel, Gemma2Model): config_class = Videollama2Gemma2Config def __init__(self, config: Gemma2Config): super(Videollama2Gemma2Model, self).__init__(config) class Videollama2Gemma2ForCausalLM(Gemma2ForCausalLM, Videollama2MetaForCausalLM): config_class = Videollama2Gemma2Config def __init__(self, config, **kwargs): super(Gemma2ForCausalLM, self).__init__(config) self.model = Videollama2Gemma2Model(config) # self.pretraining_tp = config.pretraining_tp self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_model(self): return self.model def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, images: Optional[torch.FloatTensor] = None, return_dict: Optional[bool] = None, cache_position: Optional[int] = None, **kwargs ) -> Union[Tuple, CausalLMOutputWithPast]: if inputs_embeds is None: ( input_ids, attention_mask, past_key_values, inputs_embeds, labels ) = self.prepare_inputs_labels_for_multimodal( input_ids, attention_mask, past_key_values, labels, images ) outputs = super().forward( input_ids=input_ids, attention_mask=attention_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, labels=labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, cache_position=cache_position, ) outputs.labels = labels return outputs @torch.no_grad() def generate( self, inputs: Optional[torch.Tensor] = None, images: Optional[torch.Tensor] = None, **kwargs, ) -> Union[GenerateOutput, torch.LongTensor]: position_ids = kwargs.pop("position_ids", None) attention_mask = kwargs.pop("attention_mask", None) if "inputs_embeds" in kwargs: raise NotImplementedError("`inputs_embeds` is not supported") if images is not None: ( input_ids, attention_mask, past_key_values, inputs_embeds, _ ) = self.prepare_inputs_labels_for_multimodal( input_ids=inputs, attention_mask=attention_mask, past_key_values=None, labels=None, images=images ) else: inputs_embeds = self.get_model().embed_tokens(inputs) return super().generate( position_ids=position_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, **kwargs ) def _prepare_generated_length(self, model_input_name, inputs_tensor, **kwargs): if model_input_name == "inputs_embeds": self.inputs_embeds_length = inputs_tensor.size(1) else: self.inputs_embeds_length = 0 return super()._prepare_generated_length( model_input_name=model_input_name, inputs_tensor=inputs_tensor, **kwargs) def _get_cache(self, cache_implementation: str, max_batch_size: int, max_cache_len: int, **kwargs): return super()._get_cache( cache_implementation=cache_implementation, max_batch_size=max_batch_size, max_cache_len=max_cache_len + self.inputs_embeds_length, **kwargs) def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs): images = kwargs.pop("images", None) _inputs = super().prepare_inputs_for_generation( input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs ) if images is not None: _inputs['images'] = images return _inputs AutoConfig.register("videollama2_gemma2", Videollama2Gemma2Config) AutoModelForCausalLM.register(Videollama2Gemma2Config, Videollama2Gemma2ForCausalLM)