import ast import os import math import base64 import traceback from io import BytesIO import cv2 import torch import imageio import numpy as np from PIL import Image from decord import VideoReader, cpu from moviepy.editor import VideoFileClip from transformers import StoppingCriteria from .constants import NUM_FRAMES, MAX_FRAMES, NUM_FRAMES_PER_SECOND, MODAL_INDEX_MAP, DEFAULT_IMAGE_TOKEN from moviepy.editor import VideoFileClip import random import librosa import soundfile as sf import torchaudio.compliance.kaldi as ta_kaldi from subprocess import CalledProcessError, run, Popen, PIPE import math from pytorchvideo.data.clip_sampling import ConstantClipsPerVideoSampler def chunk_list(input_list, chunk_size): return [input_list[i:i + chunk_size] for i in range(0, len(input_list), chunk_size)] def load_image_from_base64(image): return Image.open(BytesIO(base64.b64decode(image))) def expand2square(pil_img, background_color): width, height = pil_img.size if width == height: return pil_img elif width > height: result = Image.new(pil_img.mode, (width, width), background_color) result.paste(pil_img, (0, (width - height) // 2)) return result else: result = Image.new(pil_img.mode, (height, height), background_color) result.paste(pil_img, ((height - width) // 2, 0)) return result def create_photo_grid(arr, rows=None, cols=None): """ Create a photo grid from a 4D numpy array with shape [t, h, w, c]. Parameters: arr (numpy.ndarray): Input array with shape [t, h, w, c]. rows (int): Optional. Number of rows in the grid. If not set, it will be determined based on `cols` or the square root of `t`. cols (int): Optional. Number of columns in the grid. If not set, it will be determined based on `rows` or the square root of `t`. Returns: numpy.ndarray: A 3D numpy array representing the photo grid. """ if isinstance(arr, list): if isinstance(arr[0], Image.Image): arr = np.stack([np.array(img) for img in arr]) elif isinstance(arr[0], np.ndarray): arr = np.stack(arr) else: raise ValueError("Invalid input type. Expected list of Images or numpy arrays.") t, h, w, c = arr.shape # Calculate the number of rows and columns if not provided if rows is None and cols is None: rows = math.ceil(math.sqrt(t)) cols = math.ceil(t / rows) elif rows is None: rows = math.ceil(t / cols) elif cols is None: cols = math.ceil(t / rows) # Check if the grid can hold all the images if rows * cols < t: raise ValueError(f"Not enough grid cells ({rows}x{cols}) to hold all images ({t}).") # Create the grid array with appropriate height and width grid_height = h * rows grid_width = w * cols grid = np.zeros((grid_height, grid_width, c), dtype=arr.dtype) # Fill the grid with images for i in range(t): row_idx = i // cols col_idx = i % cols grid[row_idx*h:(row_idx+1)*h, col_idx*w:(col_idx+1)*w, :] = arr[i] return grid def process_image(image_path, processor, aspect_ratio='pad'): image = Image.open(image_path).convert('RGB') images = [np.array(image)] if aspect_ratio == 'pad': images = [Image.fromarray(f) for f in images] images = [expand2square(image, tuple(int(x*255) for x in processor.image_mean)) for image in images] else: images = [Image.fromarray(f) for f in images] images = processor.preprocess(images, return_tensors='pt')['pixel_values'] return images def frame_sample(duration, mode='uniform', num_frames=None, fps=None): if mode == 'uniform': assert num_frames is not None, "Number of frames must be provided for uniform sampling." # NOTE: v1 version # Calculate the size of each segment from which a frame will be extracted seg_size = float(duration - 1) / num_frames frame_ids = [] for i in range(num_frames): # Calculate the start and end indices of each segment start = seg_size * i end = seg_size * (i + 1) # Append the middle index of the segment to the list frame_ids.append((start + end) / 2) return np.round(np.array(frame_ids) + 1e-6).astype(int) # NOTE: v0 version # return np.linspace(0, duration-1, num_frames, dtype=int) elif mode == 'fps': assert fps is not None, "FPS must be provided for FPS sampling." segment_len = min(fps // NUM_FRAMES_PER_SECOND, duration) return np.arange(segment_len // 2, duration, segment_len, dtype=int) else: raise ImportError(f'Unsupported frame sampling mode: {mode}') def process_audio_file(wav_path): # read wav #print(wav_path) wav, sr = sf.read(wav_path) if len(wav.shape) == 2: wav = wav[:, 0] if len(wav) > 30 * sr: max_start = len(wav) - 30 * sr start = random.randint(0, max_start) wav = wav[start: start + 30 * sr] if len(wav) < 30 * sr: pad_length = 30 * sr - len(wav) wav = np.pad(wav, (0, pad_length), mode='constant', constant_values=0.0) if sr != 16000: wav = librosa.resample(wav, orig_sr=sr, target_sr=16000, res_type="fft") # beats raw_wav = torch.from_numpy(wav).to('cpu') waveform = raw_wav.unsqueeze(0) * 2 ** 15 fbank = ta_kaldi.fbank(waveform, num_mel_bins=128, sample_frequency=16000, frame_length=25, frame_shift=10).to(torch.bfloat16) return fbank.unsqueeze(0) def get_clip_timepoints(clip_sampler, duration): # Read out all clips in this video all_clips_timepoints = [] is_last_clip = False end = 0.0 while not is_last_clip: start, end, _, _, is_last_clip = clip_sampler(end, duration, annotation=None) all_clips_timepoints.append((start, end)) return all_clips_timepoints def load_audio_from_video(file: str, sr: int = 16000): """ Open an audio file and read as mono waveform, resampling as necessary Parameters ---------- file: str The audio file to open sr: int The sample rate to resample the audio if necessary Returns ------- A NumPy array containing the audio waveform, in float32 dtype. """ # This launches a subprocess to decode audio while down-mixing # and resampling as necessary. Requires the ffmpeg CLI in PATH. cmd = ["ffmpeg", "-nostdin", "-i", file, "-vn", # no video "-acodec", "pcm_s16le", # output audio codec (pcm_s16le for .wav) "-ac", "1", # audio channels (1 for mono) "-ar", str(sr), # audio sample rate "-f", "s16le", # output format (s16le for 16-bit PCM) "-" # output to stdout ] # fmt: on try: out = run(cmd, capture_output=True, check=True).stdout except CalledProcessError as e: raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0, sr def process_audio_from_video(audio_path, clip_duration, device="cpu", num_mel_bins=128, sample_rate=16000, clips_per_video=8, mean=-4.268, std=9.138): clip_sampler = ConstantClipsPerVideoSampler( clip_duration=2, clips_per_video=clips_per_video ) try: waveform, sr = load_audio_from_video(audio_path) #print(audio_path) except Exception as audio_error: print(f"Failed to process audio from video due to error: {audio_error}") waveform = torch.zeros(480000) waveform = waveform.numpy() sr = 16000 all_clips_timepoints = get_clip_timepoints(clip_sampler, waveform.shape[0] / sample_rate) all_clips = [] #print(waveform.shape[0] / sample_rate) for clip_timepoints in all_clips_timepoints: #print(float(clip_timepoints[0])) #print(float(clip_timepoints[1])) waveform_clip = waveform[ int(clip_timepoints[0] * sample_rate) : int( clip_timepoints[1] * sample_rate)] all_clips.append(waveform_clip) all_clips_tensors = [torch.from_numpy(clip) for clip in all_clips] wav = torch.cat(all_clips_tensors, dim=0) if len(wav) > 30 * sr: max_start = len(wav) - 30 * sr start = torch.randint(0, max_start, (1,)).item() wav = wav[start: start + 30 * sr] if len(wav) < 30 * sr: pad_length = 30 * sr - len(wav) wav = torch.nn.functional.pad(wav, (0, pad_length), mode='constant', value=0.0) waveform = wav.unsqueeze(0) * 2 ** 15 fbank = ta_kaldi.fbank(waveform, num_mel_bins=128, sample_frequency=16000, frame_length=25, frame_shift=10).to(torch.bfloat16) return fbank.unsqueeze(0) def process_video(video_path, processor, s=None, e=None, aspect_ratio='pad', num_frames=NUM_FRAMES, va=False): if isinstance(video_path, str): if s is not None and e is not None: s = s if s >= 0. else 0. e = e if e >= 0. else 0. if s > e: s, e = e, s elif s == e: e = s + 1 # 1. Loading Video if os.path.isdir(video_path): frame_files = sorted(os.listdir(video_path)) fps = 3 num_frames_of_video = len(frame_files) elif video_path.endswith('.gif'): gif_reader = imageio.get_reader(video_path) fps = 25 num_frames_of_video = len(gif_reader) else: vreader = VideoReader(video_path, ctx=cpu(0), num_threads=1) fps = vreader.get_avg_fps() num_frames_of_video = len(vreader) # 2. Determine frame range & Calculate frame indices f_start = 0 if s is None else max(int(s * fps) - 1, 0) f_end = num_frames_of_video - 1 if e is None else min(int(e * fps) - 1, num_frames_of_video - 1) frame_indices = list(range(f_start, f_end + 1)) duration = len(frame_indices) # 3. Sampling frame indices if num_frames is None: sampled_frame_indices = [frame_indices[i] for i in frame_sample(duration, mode='fps', fps=fps)] else: sampled_frame_indices = [frame_indices[i] for i in frame_sample(duration, mode='uniform', num_frames=num_frames)] # 4. Acquire frame data if os.path.isdir(video_path): video_data = [Image.open(os.path.join(video_path, frame_files[f_idx])) for f_idx in sampled_frame_indices] elif video_path.endswith('.gif'): video_data = [Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB)) for idx, frame in enumerate(gif_reader) if idx in sampled_frame_indices] else: video_data = [Image.fromarray(frame) for frame in vreader.get_batch(sampled_frame_indices).asnumpy()] elif isinstance(video_path, np.ndarray): video_data = [Image.fromarray(f) for f in video_path] elif isinstance(video_path, list) and isinstance(video_path[0], np.ndarray): video_data = [Image.fromarray(f) for f in video_path] elif isinstance(video_path, list) and isinstance(video_path[0], str): video_data = [Image.open(f) for f in video_path] elif isinstance(video_path, list) and isinstance(video_path[0], Image.Image): video_data = video_path else: raise ValueError(f"Unsupported video path type: {type(video_path)}") while num_frames is not None and len(video_data) < num_frames: video_data.append(Image.fromarray(np.zeros((*video_data[-1].size, 3), dtype=np.uint8))) # MAX_FRAMES filter video_data = video_data[:MAX_FRAMES] if aspect_ratio == 'pad': images = [expand2square(f, tuple(int(x*255) for x in processor.image_mean)) for f in video_data] video = processor.preprocess(images, return_tensors='pt')['pixel_values'] else: images = [f for f in video_data] video = processor.preprocess(images, return_tensors='pt')['pixel_values'] if va: # Calculate the duration of the video in seconds video_duration_seconds = num_frames_of_video / fps audio = process_audio_from_video(video_path, video_duration_seconds) video = {'video': video, 'audio': audio} return video def process_video_old(video_path, processor, aspect_ratio='pad', num_frames=NUM_FRAMES, image_grid=False, sample_scheme='uniform'): def frame_sample(duration, mode='uniform', local_fps=None): if mode == 'uniform': # Calculate the size of each segment from which a frame will be extracted seg_size = float(duration - 1) / num_frames frame_ids = [] for i in range(num_frames): # Calculate the start and end indices of each segment start = int(np.round(seg_size * i)) end = int(np.round(seg_size * (i + 1))) # Append the middle index of the segment to the list frame_ids.append((start + end) // 2) return frame_ids # NOTE: old version # return np.linspace(0, duration-1, num_frames, dtype=int) elif mode == 'fps': assert local_fps is not None segment_len = min(local_fps // NUM_FRAMES_PER_SECOND, duration) return np.arange(segment_len // 2, duration, segment_len, dtype=int) else: raise ImportError(f'Unsupported frame sampling mode: {mode}') if isinstance(video_path, str): if video_path.endswith('.gif'): video_gif = imageio.get_reader(video_path) duration, local_fps = len(video_gif), 10 frame_id_list = frame_sample(duration, mode=sample_scheme, local_fps=local_fps) # limit the max input frames if len(frame_id_list) > MAX_FRAMES: frame_id_list = np.linspace(0, duration-1, MAX_FRAMES, dtype=int) video_data = [frame for index, frame in enumerate(video_gif) if index in frame_id_list] # added by lixin4ever, include the support of .webm files from sthsthv2 elif video_path.endswith('.webm'): video_webm = VideoFileClip(video_path) video_frames = np.array(list(video_webm.iter_frames())) duration, local_fps = len(video_frames), video_webm.fps frame_id_list = frame_sample(duration, mode=sample_scheme, local_fps=local_fps) # limit the max input frames if len(frame_id_list) > MAX_FRAMES: frame_id_list = np.linspace(0, duration-1, MAX_FRAMES, dtype=int) video_data = video_frames[frame_id_list] else: # NOTE: num_threads=1 is required to avoid deadlock in multiprocessing decord_vr = VideoReader(uri=video_path, ctx=cpu(0), num_threads=1) duration, local_fps = len(decord_vr), float(decord_vr.get_avg_fps()) frame_id_list = frame_sample(duration, mode=sample_scheme, local_fps=local_fps) # limit the max input frames if len(frame_id_list) > MAX_FRAMES: frame_id_list = np.linspace(0, duration-1, MAX_FRAMES, dtype=int) try: video_data = decord_vr.get_batch(frame_id_list).numpy() except: video_data = decord_vr.get_batch(frame_id_list).asnumpy() elif isinstance(video_path, np.ndarray): assert len(video_path) == num_frames video_data = video_path elif isinstance(video_path, list): assert len(video_path) == num_frames video_data = np.stack([np.array(x) for x in video_path]) if image_grid: grid_h = grid_w = math.ceil(math.sqrt(num_frames)) pg = create_photo_grid(video_data, grid_h, grid_w) video_data = [pg, *video_data] if aspect_ratio == 'pad': images = [Image.fromarray(f.numpy() if isinstance(f, torch.Tensor) else f) for f in video_data] images = [expand2square(image, tuple(int(x*255) for x in processor.image_mean)) for image in images] video = processor.preprocess(images, return_tensors='pt')['pixel_values'] else: images = [Image.fromarray(f.numpy() if isinstance(f, torch.Tensor) else f) for f in video_data] video = processor.preprocess(images, return_tensors='pt')['pixel_values'] return video def tokenizer_multimodal_token(prompt, tokenizer, multimodal_token=DEFAULT_IMAGE_TOKEN, return_tensors=None): """Tokenize text and multimodal tag to input_ids. Args: prompt (str): Text prompt (w/ multimodal tag), e.g., '