Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,137 Bytes
e428df4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
# Adopted from https://github.com/haotian-liu/LLaVA. Below is the original copyright:
# Copyright 2023 Haotian Liu
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import warnings
import shutil
import torch
from transformers import PretrainedConfig, AutoTokenizer, AutoModelForCausalLM, AutoConfig, BitsAndBytesConfig
from . import *
from .multimodal_projector import load_mm_projector
from ..constants import DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, load_4bit=False, device_map="auto", device="cuda", use_flash_attn=False, **kwargs):
if 'token' in kwargs:
token = kwargs['token']
else:
token = None
kwargs = {"device_map": device_map, **kwargs}
if device != "cuda":
kwargs['device_map'] = {"": device}
if load_8bit:
kwargs['load_in_8bit'] = True
elif load_4bit:
kwargs['load_in_4bit'] = True
kwargs['quantization_config'] = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type='nf4'
)
else:
kwargs['torch_dtype'] = torch.float16
if use_flash_attn:
kwargs['attn_implementation'] = 'flash_attention_2'
if "videollama" in model_name.lower():
# Load LLaVA model
if 'lora' in model_name.lower() and model_base is None:
warnings.warn('There is `lora` in model name but no `model_base` is provided. If you are loading a LoRA model, please provide the `model_base` argument. Detailed instruction: https://github.com/haotian-liu/LLaVA#launch-a-model-worker-lora-weights-unmerged.')
if 'lora' in model_name.lower() and model_base is not None:
lora_cfg_pretrained = AutoConfig.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
print('Loading VideoLLaMA from base model...')
model = Videollama2LlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, **kwargs)
token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features
if model.lm_head.weight.shape[0] != token_num:
model.lm_head.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype))
model.model.embed_tokens.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype))
print('Loading additional VideoLLaMA weights...')
if os.path.exists(os.path.join(model_path, 'non_lora_trainables.bin')):
non_lora_trainables = torch.load(os.path.join(model_path, 'non_lora_trainables.bin'), map_location='cpu')
else:
# this is probably from HF Hub
from huggingface_hub import hf_hub_download
def load_from_hf(repo_id, filename, subfolder=None):
cache_file = hf_hub_download(
repo_id=repo_id,
filename=filename,
subfolder=subfolder)
return torch.load(cache_file, map_location='cpu')
non_lora_trainables = load_from_hf(model_path, 'non_lora_trainables.bin')
non_lora_trainables = {(k[11:] if k.startswith('base_model.') else k): v for k, v in non_lora_trainables.items()}
if any(k.startswith('model.model.') for k in non_lora_trainables):
non_lora_trainables = {(k[6:] if k.startswith('model.') else k): v for k, v in non_lora_trainables.items()}
model.load_state_dict(non_lora_trainables, strict=False)
from peft import PeftModel
print('Loading LoRA weights...')
model = PeftModel.from_pretrained(model, model_path)
print('Merging LoRA weights...')
model = model.merge_and_unload()
print('Model is loaded...')
elif model_base is not None or '-base' in model_name.lower():
# loading vision-language projector
print('Loading VideoLLaMA 2 from base model...')
cfg_pretrained = PretrainedConfig.from_pretrained(model_path, token=token)
# NOTE: AutoConfig will modify `_name_or_path` property to `model_path` if `model_path` is not None.
# cfg_pretrained = AutoConfig.from_pretrained(model_path, token=token)
model_base = model_base if model_base is not None else cfg_pretrained._name_or_path
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False, token=token)
if 'vicuna' in model_name.lower():
model = Videollama2LlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)
elif 'mixtral' in model_name.lower():
model = Videollama2MixtralForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)
else:
model = Videollama2MistralForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)
# NOTE: old codes for loading local mm_projector.bin
# mm_projector_weights = torch.load(os.path.join(model_path, 'mm_projector.bin'), map_location='cpu')
# mm_projector_weights = {k: v.to(torch.float16) for k, v in mm_projector_weights.items()}
# model.load_state_dict(mm_projector_weights, strict=False)
# NOTE: new codes which supports loading mm_projector.bin both offline and online
mm_projector_weights = load_mm_projector(model_path, token=token)
model.load_state_dict(mm_projector_weights, strict=False)
else:
if 'vicuna' in model_name.lower():
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False, token=token)
model = Videollama2LlamaForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
elif 'mixtral' in model_name.lower():
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False, token=token)
model = Videollama2MixtralForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
else:
# NOTE: mistral-based model is our default model.
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False, token=token)
model = Videollama2MistralForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
else:
# Load language model
if model_base is not None:
# PEFT model
from peft import PeftModel
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, **kwargs)
print(f"Loading LoRA weights from {model_path}")
model = PeftModel.from_pretrained(model, model_path)
print(f"Merging weights")
model = model.merge_and_unload()
print('Convert to FP16...')
model.to(torch.float16)
else:
use_fast = False
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
processor = None
if "videollama" in model_name.lower():
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True)
if mm_use_im_patch_token:
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
if mm_use_im_start_end:
tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
model.resize_token_embeddings(len(tokenizer))
vision_tower = model.get_vision_tower()
if not vision_tower.is_loaded:
vision_tower.load_model()
vision_tower.to(device=device, dtype=torch.float16)
# NOTE: videollama2 adopts the same processor for processing image and video.
processor = vision_tower.image_processor
if hasattr(model.config, "max_sequence_length"):
context_len = model.config.max_sequence_length
else:
context_len = 2048
return tokenizer, model, processor, context_len
|