Spaces:
Running
on
Zero
Running
on
Zero
File size: 22,783 Bytes
e428df4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 |
import os
import re
import math
import json
import argparse
import warnings
import torch
import decord
import numpy as np
import transformers
from PIL import Image
from tqdm import tqdm
from decord import VideoReader, cpu
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms as T
from torchvision.transforms import functional as F
import sys
sys.path.append('./')
from videollama2.conversation import conv_templates, SeparatorStyle
from videollama2.constants import NUM_FRAMES, DEFAULT_MMODAL_TOKEN, DEFAULT_MMODAL_START_TOKEN, DEFAULT_MMODAL_END_TOKEN, MMODAL_TOKEN_INDEX
from videollama2.mm_utils import get_model_name_from_path, tokenizer_MMODAL_token, KeywordsStoppingCriteria, process_videos, expand2square
from videollama2.model.builder import load_pretrained_model
# NOTE: Ignore TypedStorage warning, which refers to this link~(https://github.com/pytorch/pytorch/issues/97207#issuecomment-1494781560)
warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated')
default_mm_token = DEFAULT_MMODAL_TOKEN["VIDEO"]
default_mm_start_token = DEFAULT_MMODAL_START_TOKEN["VIDEO"]
default_mm_end_token = DEFAULT_MMODAL_END_TOKEN["VIDEO"]
modal_token_index = MMODAL_TOKEN_INDEX["VIDEO"]
def split_list(lst, n):
"""Split a list into n (roughly) equal-sized chunks"""
chunk_size = math.ceil(len(lst) / n) # integer division
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
def get_chunk(lst, n, k):
chunks = split_list(lst, n)
return chunks[k]
class MVBenchDataset(Dataset):
def __init__(self, data_list, processor, num_segments=8):
self.data_list = data_list
self.decord_method = {
'video': self.read_video,
'gif': self.read_gif,
'frame': self.read_frame,
}
self.processor = processor
self.num_segments = num_segments
def __str__(self):
len_list = {}
option_list = {}
for data in self.data_list:
if data['task_type'] not in len_list:
len_list[data['task_type']] = 0
len_list[data['task_type']] += 1
if data['task_type'] not in option_list:
option_list[data['task_type']] = 0
option_list[data['task_type']] += len(data['data']['candidates'])
correct = 0
total = 0
res = f"There are {len(self.data_list)} videos as follow:\n"
for k, v in len_list.items():
correct += len_list[k]
total += option_list[k]
res += f"{v} for {k} ({option_list[k]} options => {len_list[k]/option_list[k]*100:.2f}%)\n"
correct = correct + 1 / option_list[k]
res += f"Total random accuracy: {correct/total*100:.2f}%"
return res.rstrip()
def __len__(self):
return len(self.data_list)
def get_index(self, bound, fps, max_frame, first_idx=0):
if bound:
start, end = bound[0], bound[1]
else:
start, end = -100000, 100000
start_idx = max(first_idx, round(start * fps))
end_idx = min(round(end * fps), max_frame)
seg_size = float(end_idx - start_idx) / self.num_segments
frame_indices = np.array([
int(start_idx + (seg_size / 2) + np.round(seg_size * idx))
for idx in range(self.num_segments)
])
return frame_indices
def read_video(self, video_path, bound=None):
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
max_frame = len(vr) - 1
fps = float(vr.get_avg_fps())
images_group = list()
frame_indices = self.get_index(bound, fps, max_frame, first_idx=0)
for frame_index in frame_indices:
img = Image.fromarray(vr[frame_index].asnumpy())
images_group.append(img)
# images_group = [expand2square(img, tuple(int(x*255) for x in self.processor.image_mean)) for img in images_group]
torch_imgs = self.processor(images_group, return_tensors='pt')['pixel_values']
return torch_imgs
def read_gif(self, video_path, bound=None, fps=25):
gif = imageio.get_reader(video_path)
max_frame = len(gif) - 1
images_group = list()
frame_indices = self.get_index(bound, fps, max_frame, first_idx=0)
for index, frame in enumerate(gif):
if index in frame_indices:
img = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB)
img = Image.fromarray(img)
images_group.append(img)
# images_group = [expand2square(img, tuple(int(x*255) for x in self.processor.image_mean)) for img in images_group]
torch_imgs = self.processor(images_group, return_tensors='pt')['pixel_values']
return torch_imgs
def read_frame(self, video_path, bound=None, fps=3):
max_frame = len(os.listdir(video_path))
images_group = list()
frame_indices = self.get_index(bound, fps, max_frame, first_idx=1) # frame_idx starts from 1
for frame_index in frame_indices:
img = Image.open(os.path.join(video_path, f"{frame_index:05d}.jpg"))
images_group.append(img)
# images_group = [expand2square(img, tuple(int(x*255) for x in self.processor.image_mean)) for img in images_group]
torch_imgs = self.processor.preprocess(images_group, return_tensors='pt')['pixel_values']
return torch_imgs
def qa_template(self, data):
question = f"Question: {data['question']}\n"
question += "Options:\n"
answer = data['answer']
answer_idx = -1
for idx, c in enumerate(data['candidates']):
question += f"({chr(ord('A') + idx)}) {c}\n"
if c == answer:
answer_idx = idx
question = question.rstrip()
answer = f"({chr(ord('A') + answer_idx)}) {answer}"
return question, answer
def __getitem__(self, idx):
decord_method = self.decord_method[self.data_list[idx]['data_type']]
bound = None
if self.data_list[idx]['bound']:
bound = (
self.data_list[idx]['data']['start'],
self.data_list[idx]['data']['end'],
)
video_path = os.path.join(self.data_list[idx]['prefix'], self.data_list[idx]['data']['video'])
torch_imgs = decord_method(video_path, bound)
question = self.data_list[idx]['data']['question']
options = self.data_list[idx]['data']['candidates']
answer = self.data_list[idx]['data']['answer']
task_type = self.data_list[idx]['task_type']
# question, answer = self.qa_template(self.data_list[idx]['data'])
answer_idx = -1
letters = []
options_string = ''
for option_idx, c in enumerate(options):
letters.append(f"{chr(ord('A') + option_idx)}")
options_string += f"({chr(ord('A') + option_idx)}) {c}\n"
if c == answer:
answer_idx = option_idx
option_question = f'Question: {question}\nOptions:\n{options_string}Answer with the option\'s letter from the given choices directly and only give the best option.'
return {
'video': torch_imgs,
'video_path': video_path,
'question': option_question,
'letters': ','.join(letters),
'answer_idx': answer_idx,
'task_type': task_type
}
tasks = {
"Action Sequence": ("action_sequence.json", "star/Charades_v1_480/", "video", True), # has start & end
"Action Prediction": ("action_prediction.json", "star/Charades_v1_480/", "video", True), # has start & end
"Action Antonym": ("action_antonym.json", "ssv2_video/", "video", False),
"Fine-grained Action": ("fine_grained_action.json", "Moments_in_Time_Raw/videos/", "video", False),
"Unexpected Action": ("unexpected_action.json", "FunQA_test/test/", "video", False),
"Object Existence": ("object_existence.json", "clevrer/video_validation/", "video", False),
"Object Interaction": ("object_interaction.json", "star/Charades_v1_480/", "video", True), # has start & end
"Object Shuffle": ("object_shuffle.json", "perception/videos/", "video", False),
"Moving Direction": ("moving_direction.json", "clevrer/video_validation/", "video", False),
"Action Localization": ("action_localization.json", "sta/sta_video/", "video", True), # has start & end
"Scene Transition": ("scene_transition.json", "scene_qa/video/", "video", False),
"Action Count": ("action_count.json", "perception/videos/", "video", False),
"Moving Count": ("moving_count.json", "clevrer/video_validation/", "video", False),
"Moving Attribute": ("moving_attribute.json", "clevrer/video_validation/", "video", False),
"State Change": ("state_change.json", "perception/videos/", "video", False),
"Fine-grained Pose": ("fine_grained_pose.json", "nturgbd/", "video", False),
"Character Order": ("character_order.json", "perception/videos/", "video", False),
"Egocentric Navigation": ("egocentric_navigation.json", "vlnqa/", "video", False),
"Episodic Reasoning": ("episodic_reasoning.json", "tvqa/frames_fps3_hq/", "frame", True), # has start & end, read frame
"Counterfactual Inference": ("counterfactual_inference.json", "clevrer/video_validation/", "video", False),
}
def build_mvbench_eval(args, processor, num_frames):
data_list = []
for task_name, task in tasks.items():
json_file = os.path.join(args.question_file, task[0])
vis_folder = os.path.join(args.video_folder, task[1])
with open(json_file, 'r') as f:
json_data = json.load(f)
for data in json_data:
data_list.append({
'task_type': task_name,
'prefix': vis_folder,
'data_type': task[2],
'bound': task[3],
'data': data
})
data_list = get_chunk(data_list, args.num_chunks, args.chunk_idx)
dataset = MVBenchDataset(data_list, processor, num_segments=num_frames)
dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers)
return dataloader
def mvbench_dump(ans_file, line, outputs):
for idx, output in enumerate(outputs):
vid = line['video_path'][idx]
task_type = line['task_type'][idx]
letters = line['letters'][idx].split(',')
answer_idx = line['answer_idx'][idx].item()
pred_answer = re.findall(f'[\(,\ ]*[{letters[0]}-{letters[-1]}][\),\ ]*', output)
if len(pred_answer) == 0:
pred_idx = (answer_idx + 1) % len(letters)
else:
pred_answer = pred_answer[0].strip()
if pred_answer.startswith('('):
pred_answer = pred_answer.strip('()')
pred_idx = letters.index(pred_answer)
ans_file.write(json.dumps({"vid": vid, "task_type": task_type, "pred": pred_idx, "gt": answer_idx}) + '\n')
class NextoeDataset(Dataset):
video_formats = ['.mp4', '.avi', '.mov', '.mkv']
def __init__(self, data_list, processor, num_segments=8):
self.data_list = data_list
self.processor = processor
self.num_segments = num_segments
def __len__(self):
return len(self.data_list)
def __getitem__(self, idx):
line = self.data_list[idx]
video_name = line['video']
question = line['question']
answer = line['answer']
for fmt in self.video_formats: # Added this line
temp_path = os.path.join(args.video_folder, f"{video_name}{fmt}")
if os.path.exists(temp_path):
video_path = temp_path
break
decord_vr = VideoReader(uri=video_path, ctx=cpu(0))
frames = decord_vr.get_batch(np.linspace(0, len(decord_vr) - 1, 8, dtype=int)).asnumpy()
video_tensor = self.processor.preprocess(frames, return_tensors='pt')['pixel_values'] # do not pad for video frames
wrapped_question = f'Question: {question}\nAnswer the question using a single word or a short phrase with multiple words.'
return {
'video': video_tensor,
'question': wrapped_question,
'answer': answer,
'qid': line['qid']
}
def build_nextoe_eval(args, processor, num_frames):
questions = json.load(open(args.question_file, "r"))
questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
dataset = NextoeDataset(questions, processor, num_segments=num_frames)
dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers)
return dataloader
def nextoe_dump(ans_file, line, outputs):
for idx, output in enumerate(outputs):
vid, qid = line['qid'][idx].split('_')
ans_file.write(json.dumps({"vid": vid, "qid": qid, "prediction": output}) + '\n')
class NextqaDataset(Dataset):
video_formats = ['.mp4', '.avi', '.mov', '.mkv']
def __init__(self, data_list, processor, num_segments=8):
self.data_list = data_list
self.processor = processor
self.num_segments = num_segments
def __len__(self):
return len(self.data_list)
def __getitem__(self, idx):
line = self.data_list[idx]
video_name = line['video']
question = line['question']
answer = line['answer']
for fmt in self.video_formats: # Added this line
temp_path = os.path.join(args.video_folder, f"{video_name}{fmt}")
if os.path.exists(temp_path):
video_path = temp_path
break
decord_vr = VideoReader(uri=video_path, ctx=cpu(0))
frames = decord_vr.get_batch(np.linspace(0, len(decord_vr) - 1, 8, dtype=int)).asnumpy()
video_tensor = self.processor.preprocess(frames, return_tensors='pt')['pixel_values'] # do not pad for video frames
assert line['num_option'] == 5
a0 = line['a0']
a1 = line['a1']
a2 = line['a2']
a3 = line['a3']
a4 = line['a4']
option_question = f'Question: {question}\nOptions:\n(A) {a0}\n(B) {a1}\n(C) {a2}\n(D) {a3}\n(E) {a4}\nAnswer with the option\'s letter from the given choices directly and only give the best option.'
return {
'video': video_tensor,
'question': option_question,
'answer': answer,
'qid': line['qid']
}
def build_nextqa_eval(args, processor, num_frames):
questions = json.load(open(args.question_file, "r"))
questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
dataset = NextqaDataset(questions, processor, num_segments=num_frames)
dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers)
return dataloader
def nextqa_dump(ans_file, line, outputs):
for idx, output in enumerate(outputs):
qid = line['qid'][idx]
answer = line['answer'][idx].item()
letters = ['A', 'B', 'C', 'D', 'E']
pred_answer = re.findall('[\(,\ ]*[A-E][\),\ ]*', output)
if len(pred_answer) == 0:
pred_idx = 2
else:
pred_answer = pred_answer[0].strip()
if pred_answer.startswith('('):
pred_answer = pred_answer.strip('()')
pred_idx = letters.index(pred_answer)
ans_file.write(json.dumps({"id": qid, "prediction": pred_idx, "answer": answer}) + '\n')
class EgoschemaDataset(Dataset):
video_formats = ['.mp4', '.avi', '.mov', '.mkv']
def __init__(self, data_list, processor, num_segments=8):
self.data_list = data_list
self.processor = processor
self.num_segments = num_segments
def __len__(self):
return len(self.data_list)
def __getitem__(self, idx):
line = self.data_list[idx]
q_uid = line['q_uid']
for fmt in self.video_formats: # Added this line
temp_path = os.path.join(args.video_folder, f"{q_uid}{fmt}")
if os.path.exists(temp_path):
video_path = temp_path
break
decord_vr = VideoReader(uri=video_path, ctx=cpu(0))
frames = decord_vr.get_batch(np.linspace(0, len(decord_vr) - 1, self.num_segments, dtype=int)).asnumpy()
video_tensor = self.processor.preprocess(frames, return_tensors='pt')['pixel_values'] # do not pad for video frames
question = line['question']
a0 = line['option 0']
a1 = line['option 1']
a2 = line['option 2']
a3 = line['option 3']
a4 = line['option 4']
axs = [a0, a1, a2, a3, a4]
ops = ['(A)', '(B)', '(C)', '(D)', '(E)']
option_question = f'Question: {question}\nOptions:\n(A) {a0}\n(B) {a1}\n(C) {a2}\n(D) {a3}\n(E) {a4}\n.Answer with the option\'s letter from the given choices directly and only give the best option.'
return {
'q_uid': q_uid,
'video': video_tensor,
'question': option_question,
}
def build_egoschema_eval(args, processor, num_frames):
questions = json.load(open(args.question_file, "r"))
questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
dataset = EgoschemaDataset(questions, processor, num_segments=num_frames)
dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers)
return dataloader
def egoschema_dump(ans_file, line, outputs):
for idx, output in enumerate(outputs):
q_uid = line['q_uid'][idx]
letters = ['A', 'B', 'C', 'D', 'E']
pred_answer = re.findall('[\(\ ]*[A-E][\)\ ]*', output)
if len(pred_answer) == 0:
pred_idx = 2
else:
pred_answer = pred_answer[0].strip()
# if pred_answer.startswith('('):
pred_answer = pred_answer.strip('()')
pred_idx = letters.index(pred_answer)
ans_file.write(f'{q_uid}, {pred_idx}\n')
def get_model_output(model, video_tensor, tokenizer, questions, conv_mode="v1", device='cuda'):
input_ids = []
modal_list = []
for qs in questions:
if model.config.mm_use_im_start_end:
qs = default_mm_start_token + default_mm_token + default_mm_end_token + "\n" + qs
else:
qs = default_mm_token + "\n" + qs
conv = conv_templates[conv_mode].copy()
conv.append_message(conv.roles[0], qs)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_id = tokenizer_MMODAL_token(prompt, tokenizer, modal_token_index, return_tensors='pt')
input_ids.append(input_id)
modal_list.append("video")
# left pad sequence
input_ids = torch.nn.utils.rnn.pad_sequence(
[x.flip(dims=[0]) for x in input_ids],
batch_first=True,
padding_value=tokenizer.pad_token_id).flip(dims=[1]).to(device)
attention_mask=input_ids.ne(tokenizer.pad_token_id).to(device)
video_tensor = video_tensor.half().to(args.device)
with torch.inference_mode():
output_ids = model.generate(
input_ids,
attention_mask=attention_mask,
images_or_videos=video_tensor,
modal_list=modal_list,
do_sample=False,
max_new_tokens=1024,
use_cache=True,
pad_token_id=tokenizer.eos_token_id)
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
return outputs
def run_inference(args):
"""
Run inference on ActivityNet QA DataSet using the Video-ChatGPT model.
Args:
args: Command-line arguments.
"""
# Initialize the model
model_name = get_model_name_from_path(args.model_path)
tokenizer, model, processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name)
num_frames = model.config.num_frames if hasattr(model.config, "num_frames") else NUM_FRAMES
answer_file = os.path.expanduser(args.answer_file)
os.makedirs(os.path.dirname(answer_file), exist_ok=True)
ans_file = open(answer_file, "w")
output_list = [] # List to store the output results
if args.dataset == 'mvbench':
val_loader = build_mvbench_eval(args, processor, num_frames)
elif args.dataset == 'nextoe':
val_loader = build_nextoe_eval(args, processor, num_frames)
elif args.dataset == 'nextqa':
val_loader = build_nextqa_eval(args, processor, num_frames)
elif args.dataset == 'egoschema':
val_loader = build_egoschema_eval(args, processor, num_frames)
else:
raise NotImplementedError(f"Dataset {args.dataset} not implemented.")
# Iterate over each sample in the ground truth file
for i, line in enumerate(tqdm(val_loader)):
video_tensor = line['video']
questions = line['question']
outputs = get_model_output(model, video_tensor, tokenizer, questions, args.conv_mode, args.device)
if args.dataset == 'mvbench':
mvbench_dump(ans_file, line, outputs)
elif args.dataset == 'nextoe':
nextoe_dump(ans_file, line, outputs)
elif args.dataset == 'nextqa':
nextqa_dump(ans_file, line, outputs)
elif args.dataset == 'egoschema':
egoschema_dump(ans_file, line, outputs)
else:
raise NotImplementedError(f"Dataset {args.dataset} not implemented.")
ans_file.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Multiple-Choice Video QA Evaluation Script.')
parser.add_argument('--dataset', help='Dataset to evaluate on.', required=True)
parser.add_argument('--model-path', help='', required=True)
parser.add_argument('--model_base', help='', default=None, type=str, required=False)
parser.add_argument('--video-folder', help='Directory containing video files.', required=True)
parser.add_argument('--question-file', help='Path to the ground truth file containing question.', required=True)
parser.add_argument('--answer-file', help='Path to the ground truth file containing answers.', required=True)
parser.add_argument("--conv-mode", type=str, default="llava_v1")
parser.add_argument("--num-chunks", type=int, default=1)
parser.add_argument("--chunk-idx", type=int, default=0)
parser.add_argument("--device", type=str, required=False, default='cuda:0')
parser.add_argument("--model_max_length", type=int, required=False, default=2048)
parser.add_argument("--batch-size", type=int, default=1)
parser.add_argument("--num-workers", type=int, default=8)
args = parser.parse_args()
run_inference(args)
|