Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import re | |
import math | |
import json | |
import argparse | |
import warnings | |
from tqdm import tqdm | |
import torch | |
import decord | |
import numpy as np | |
import transformers | |
from decord import VideoReader, cpu | |
from torch.utils.data import Dataset, DataLoader | |
import sys | |
sys.path.append('./') | |
from videollama2.conversation import conv_templates, SeparatorStyle | |
from videollama2.constants import NUM_FRAMES, DEFAULT_MMODAL_TOKEN, DEFAULT_MMODAL_START_TOKEN, DEFAULT_MMODAL_END_TOKEN, MMODAL_TOKEN_INDEX | |
from videollama2.mm_utils import get_model_name_from_path, tokenizer_MMODAL_token, KeywordsStoppingCriteria, process_video | |
from videollama2.model.builder import load_pretrained_model | |
# NOTE: Ignore TypedStorage warning, which refers to this link~(https://github.com/pytorch/pytorch/issues/97207#issuecomment-1494781560) | |
warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated') | |
default_mm_token = DEFAULT_MMODAL_TOKEN["VIDEO"] | |
default_mm_start_token = DEFAULT_MMODAL_START_TOKEN["VIDEO"] | |
default_mm_end_token = DEFAULT_MMODAL_END_TOKEN["VIDEO"] | |
modal_token_index = MMODAL_TOKEN_INDEX["VIDEO"] | |
def split_list(lst, n): | |
"""Split a list into n (roughly) equal-sized chunks""" | |
chunk_size = math.ceil(len(lst) / n) # integer division | |
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)] | |
def get_chunk(lst, n, k): | |
chunks = split_list(lst, n) | |
return chunks[k] | |
class VCGPTDataset(Dataset): | |
video_formats = ['.mp4', '.avi', '.mov', '.mkv'] | |
def __init__(self, data_list, processor, num_frames): | |
self.data_list = data_list | |
self.processor = processor | |
self.num_frames = num_frames | |
def __len__(self): | |
return len(self.data_list) | |
def __getitem__(self, idx): | |
line = self.data_list[idx] | |
question = line['Q'] | |
answer = line['A'] | |
video_name = line['video_name'] | |
for fmt in self.video_formats: # Added this line | |
temp_path = os.path.join(args.video_folder, f"{video_name}{fmt}") | |
if os.path.exists(temp_path): | |
video_path = temp_path | |
break | |
video_tensor = process_video(video_path, self.processor, aspect_ratio=None, sample_scheme='uniform', num_frames=self.num_frames) | |
return { | |
'video': video_tensor, | |
'video_name': video_name, | |
'question': question, | |
'answer': answer, | |
} | |
def collate_fn(batch): | |
vid = [x['video'] for x in batch] | |
v_id = [x['video_name'] for x in batch] | |
qus = [x['question'] for x in batch] | |
ans = [x['answer'] for x in batch] | |
vid = torch.stack(vid, dim=0) | |
return vid, v_id, qus, ans | |
def get_model_output(model, tokenizer, qs, video_tensor, args): | |
if model.config.mm_use_im_start_end: | |
qs = default_mm_start_token + default_mm_token + default_mm_end_token + "\n" + qs | |
else: | |
qs = default_mm_token + "\n" + qs | |
conv = conv_templates[args.conv_mode].copy() | |
conv.append_message(conv.roles[0], qs) | |
conv.append_message(conv.roles[1], None) | |
prompt = conv.get_prompt() | |
# input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(args.device) | |
input_ids = tokenizer_MMODAL_token(prompt, tokenizer, modal_token_index, return_tensors='pt').to(args.device) | |
attention_mask=input_ids.ne(tokenizer.pad_token_id).to(args.device) | |
modal_list = ["video"] | |
video_tensor = video_tensor.to(dtype=torch.float16, device=args.device, non_blocking=True) | |
with torch.inference_mode(): | |
output_ids = model.generate( | |
input_ids.unsqueeze(0), | |
attention_mask=attention_mask.unsqueeze(0), | |
images_or_videos=[video_tensor], | |
modal_list=modal_list, | |
do_sample=False, | |
max_new_tokens=1024, | |
use_cache=True, | |
pad_token_id=tokenizer.eos_token_id) | |
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip() | |
return outputs | |
def run_inference(args): | |
model_name = get_model_name_from_path(args.model_path) | |
tokenizer, model, processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name) | |
num_frames = model.config.num_frames if hasattr(model.config, "num_frames") else NUM_FRAMES | |
questions = json.load(open(args.question_file, "r")) | |
questions = get_chunk(questions, args.num_chunks, args.chunk_idx) | |
assert args.batch_size == 1, "Batch size must be 1 for inference" | |
dataset = VCGPTDataset(questions, processor, num_frames) | |
dataloader = DataLoader(dataset, shuffle=False, batch_size=args.batch_size, num_workers=args.num_workers, collate_fn=collate_fn) | |
answer_file = os.path.expanduser(args.answer_file) | |
os.makedirs(os.path.dirname(answer_file), exist_ok=True) | |
ans_file = open(answer_file, "w") | |
output_list = [] # List to store the output results | |
# Iterate over each sample in the ground truth file | |
for i, (video_tensors, video_names, questions, answers) in enumerate(tqdm(dataloader)): | |
# reduce batch dimension | |
video_tensor = video_tensors[0] | |
video_name = video_names[0] | |
question = questions[0] | |
answer = answers[0] | |
output = get_model_output(model, tokenizer, question, video_tensor, args) | |
qa = {'video_name': video_name, 'Q': question, 'A': answer, 'P': output} | |
ans_file.write(json.dumps(qa) + "\n") | |
ans_file.close() | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
# Define the command-line arguments | |
parser.add_argument('--model-path', help='', required=True) | |
parser.add_argument('--model_base', help='', default=None, type=str, required=False) | |
parser.add_argument('--video-folder', help='Directory containing video files.', required=True) | |
parser.add_argument('--question-file', help='Path to the ground truth file containing question.', required=True) | |
parser.add_argument('--answer-file', help='Path to the ground truth file containing answers.', required=True) | |
parser.add_argument("--conv-mode", type=str, default="llava_v1") | |
parser.add_argument("--num-chunks", type=int, default=1) | |
parser.add_argument("--chunk-idx", type=int, default=0) | |
parser.add_argument("--device", type=str, required=False, default='cuda:0') | |
parser.add_argument("--model_max_length", type=int, required=False, default=2048) | |
parser.add_argument("--batch-size", type=int, required=False, default=1) | |
parser.add_argument("--num-workers", type=int, required=False, default=8) | |
args = parser.parse_args() | |
run_inference(args) | |