Spaces:
Running
on
Zero
Running
on
Zero
import ast | |
import math | |
import base64 | |
from io import BytesIO | |
import torch | |
import decord | |
import imageio | |
import numpy as np | |
from PIL import Image | |
from decord import VideoReader, cpu | |
from moviepy.editor import VideoFileClip | |
from transformers import StoppingCriteria | |
from scenedetect import open_video, SceneManager | |
from scenedetect.detectors import ContentDetector | |
from scenedetect.stats_manager import StatsManager | |
from .constants import NUM_FRAMES, MAX_FRAMES, NUM_FRAMES_PER_SECOND, MMODAL_INDEX_TOKEN, IMAGE_TOKEN_INDEX | |
def merge_scenes(cut_list, cut_scores, scene_list,num_frames,max_scene_num=4, num_frame_per_scene=8, min_frames_per_scene=30): | |
if len(scene_list) == len(cut_list) and len(scene_list) == 0: | |
frame_ids = np.linspace(0, num_frames-1, num_frame_per_scene, dtype=int) # only one scene for current video | |
return [frame_ids] | |
scene_list, cut_results = merge_scenes_not_exeed_max_scene_num(cut_list,cut_scores,scene_list, max_scene_num) | |
prev_cut_point = 0 | |
list_of_scene_frames = [] | |
for (cur_cut_point, _) in cut_results: | |
frame_ids = list(np.linspace(prev_cut_point, cur_cut_point-1, num_frame_per_scene, dtype=int)) | |
list_of_scene_frames.append(frame_ids) | |
prev_cut_point = cur_cut_point | |
if cur_cut_point < num_frames: | |
frame_ids = np.linspace(cur_cut_point, num_frames-1, num_frame_per_scene, dtype=int) | |
list_of_scene_frames.append(frame_ids) | |
return list_of_scene_frames | |
def merge_scenes_not_exeed_max_scene_num(cut_list,cut_scores, scene_list, max_scene_num): | |
cut_frames = [ele.get_frames() for ele in cut_list] | |
cut_results = list(zip(cut_frames, cut_scores)) | |
while len(scene_list) > max_scene_num: | |
min_idx = np.argmin(cut_scores) | |
cut_frames = [ele for idx, ele in enumerate(cut_frames) if idx != min_idx] | |
cut_scores = [ele for idx, ele in enumerate(cut_scores) if idx != min_idx] | |
# merge scene list | |
num_scenes = len(scene_list) | |
#print("Current min_idx:", min_idx) | |
s1 = scene_list[min_idx] | |
s2 = scene_list[min_idx+1] | |
new_scene = (s1[0], s2[1]) | |
if min_idx == 0: | |
# merge the first two scenes | |
new_scene_list = [new_scene] + scene_list[2:] | |
elif min_idx == num_scenes - 1: | |
# # merge the last two scenes | |
new_scene_list = scene_list[:min_idx-1] + [new_scene] | |
else: | |
new_scene_list = scene_list[:min_idx] + [new_scene] + scene_list[min_idx+2:] | |
scene_list = new_scene_list | |
cut_results = list(zip(cut_frames, cut_scores)) | |
return scene_list, cut_results | |
def split_video_into_scenes(video_path, threshold=27.0, max_scene_num=10, num_frame_per_scene=8): | |
# Open video, create a scene manager, and add a detector. | |
video = open_video(video_path) | |
stats_manager = StatsManager() | |
scene_manager = SceneManager(stats_manager) | |
detector = ContentDetector(threshold=threshold) | |
scene_manager.add_detector(detector) | |
scene_manager.detect_scenes(video) | |
scene_list = scene_manager.get_scene_list() | |
cut_list = scene_manager.get_cut_list() | |
num_frames = video.duration.get_frames() | |
if len(scene_list) == len(cut_list) and len(scene_list) == 0: | |
frame_ids = np.linspace(0, num_frames-1, num_frame_per_scene, dtype=int) # only one scene for current video | |
return [frame_ids] | |
assert len(scene_list) == len(cut_list) + 1, f"inconsistent lengths for scene list ({len(scene_list)}) vs. cut list ({len(cut_list)})" | |
cut_frames = [ele.get_frames() for ele in cut_list] | |
cut_scores = [stats_manager.get_metrics(f, ["delta_lum"])[0] for f in cut_frames] | |
cut_results = list(zip(cut_frames, cut_scores)) | |
#print(f"Original cut scores: {cut_scores}, original scene list: {scene_list}") | |
while len(scene_list) > max_scene_num: | |
min_idx = np.argmin(cut_scores) | |
cut_frames = [ele for idx, ele in enumerate(cut_frames) if idx != min_idx] | |
cut_scores = [ele for idx, ele in enumerate(cut_scores) if idx != min_idx] | |
# merge scene list | |
num_scenes = len(scene_list) | |
#print("Current min_idx:", min_idx) | |
s1 = scene_list[min_idx] | |
s2 = scene_list[min_idx+1] | |
new_scene = (s1[0], s2[1]) | |
if min_idx == 0: | |
# merge the first two scenes | |
new_scene_list = [new_scene] + scene_list[2:] | |
elif min_idx == num_scenes - 1: | |
# # merge the last two scenes | |
new_scene_list = scene_list[:min_idx-1] + [new_scene] | |
else: | |
new_scene_list = scene_list[:min_idx] + [new_scene] + scene_list[min_idx+2:] | |
scene_list = new_scene_list | |
cut_results = list(zip(cut_frames, cut_scores)) | |
#print(f"Cut scores after merging: {cut_scores}, scene list: {scene_list}") | |
prev_cut_point = 0 | |
list_of_scene_frames = [] | |
for (cur_cut_point, _) in cut_results: | |
frame_ids = list(np.linspace(prev_cut_point, cur_cut_point-1, num_frame_per_scene, dtype=int)) | |
list_of_scene_frames.append(frame_ids) | |
prev_cut_point = cur_cut_point | |
if cur_cut_point < num_frames: | |
frame_ids = np.linspace(cur_cut_point, num_frames-1, num_frame_per_scene, dtype=int) | |
list_of_scene_frames.append(frame_ids) | |
# print(f"Finally got {len(list_of_scene_frames)} scenes where we evenly sampled {num_frame_per_scene} frames for each scene") | |
return list_of_scene_frames | |
def select_best_resolution(original_size, possible_resolutions): | |
""" | |
Selects the best resolution from a list of possible resolutions based on the original size. | |
Args: | |
original_size (tuple): The original size of the image in the format (width, height). | |
possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...]. | |
Returns: | |
tuple: The best fit resolution in the format (width, height). | |
""" | |
original_width, original_height = original_size | |
best_fit = None | |
max_effective_resolution = 0 | |
min_wasted_resolution = float('inf') | |
for width, height in possible_resolutions: | |
scale = min(width / original_width, height / original_height) | |
downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale) | |
effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height) | |
wasted_resolution = (width * height) - effective_resolution | |
if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution): | |
max_effective_resolution = effective_resolution | |
min_wasted_resolution = wasted_resolution | |
best_fit = (width, height) | |
return best_fit | |
def resize_and_pad_image(image, target_resolution): | |
""" | |
Resize and pad an image to a target resolution while maintaining aspect ratio. | |
Args: | |
image (PIL.Image.Image): The input image. | |
target_resolution (tuple): The target resolution (width, height) of the image. | |
Returns: | |
PIL.Image.Image: The resized and padded image. | |
""" | |
original_width, original_height = image.size | |
target_width, target_height = target_resolution | |
scale_w = target_width / original_width | |
scale_h = target_height / original_height | |
if scale_w < scale_h: | |
new_width = target_width | |
new_height = min(math.ceil(original_height * scale_w), target_height) | |
else: | |
new_height = target_height | |
new_width = min(math.ceil(original_width * scale_h), target_width) | |
# Resize the image | |
resized_image = image.resize((new_width, new_height)) | |
new_image = Image.new('RGB', (target_width, target_height), (0, 0, 0)) | |
paste_x = (target_width - new_width) // 2 | |
paste_y = (target_height - new_height) // 2 | |
new_image.paste(resized_image, (paste_x, paste_y)) | |
return new_image | |
def divide_to_patches(image, patch_size): | |
""" | |
Divides an image into patches of a specified size. | |
Args: | |
image (PIL.Image.Image): The input image. | |
patch_size (int): The size of each patch. | |
Returns: | |
list: A list of PIL.Image.Image objects representing the patches. | |
""" | |
patches = [] | |
width, height = image.size | |
for i in range(0, height, patch_size): | |
for j in range(0, width, patch_size): | |
box = (j, i, j + patch_size, i + patch_size) | |
patch = image.crop(box) | |
patches.append(patch) | |
return patches | |
def get_anyres_image_grid_shape(image_size, grids, patch_size): | |
""" | |
Calculate the shape of the image patch grid after the preprocessing for images of any resolution. | |
Args: | |
image_size (tuple): The size of the input image in the format (width, height). | |
grids (str, List[tuple[int]]): Patch segmentation grid. | |
patch_size (int): The size of each image patch. | |
Returns: | |
tuple: The shape of the image patch grid in the format (width, height). | |
""" | |
if type(grids) is list: | |
possible_resolutions = [(x * patch_size, y * patch_size) for x, y in grids] | |
else: | |
possible_resolutions = [(x * patch_size, y * patch_size) for x, y in ast.literal_eval(grids)] | |
width, height = select_best_resolution(image_size, possible_resolutions) | |
return width // patch_size, height // patch_size | |
def process_anyres_image(image, grids, patch_size): | |
""" | |
Process an image with variable resolutions. | |
Args: | |
image (PIL.Image.Image): The input image to be processed. | |
grids (str, List[tuple[int]]): Patch segmentation grid. | |
patch_size (int): The size of the patches to be extracted. | |
Returns: | |
torch.Tensor: A tensor containing the processed image patches. | |
""" | |
if type(grids) is list: | |
possible_resolutions = [(x * patch_size, y * patch_size) for x, y in grids] | |
else: | |
possible_resolutions = [(x * patch_size, y * patch_size) for x, y in ast.literal_eval(grids)] | |
best_resolution = select_best_resolution(image.size, possible_resolutions) | |
image_padded = resize_and_pad_image(image, best_resolution) | |
patches = divide_to_patches(image_padded, patch_size) | |
image_original_resize = resize_and_pad_image(image, (patch_size, patch_size)) | |
image_patches = [image_original_resize] + patches | |
return image_patches | |
def chunk_list(input_list, chunk_size): | |
return [input_list[i:i + chunk_size] for i in range(0, len(input_list), chunk_size)] | |
def frame_expansion(frame_list, n): | |
assert len(frame_list) == n * n | |
width, height = frame_list[0].width, frame_list[0].height | |
expanded_width = n * width | |
expanded_height = n * height | |
expanded_frame = Image.new('RGB', (expanded_width, expanded_height)) | |
for i in range(n): | |
for j in range(n): | |
frame = frame_list[i * n + j] | |
coordinate = (j*width, i*height) | |
expanded_frame.paste(frame, coordinate) | |
return expanded_frame | |
def load_image_from_base64(image): | |
return Image.open(BytesIO(base64.b64decode(image))) | |
def expand2square(pil_img, background_color): | |
width, height = pil_img.size | |
if width == height: | |
return pil_img | |
elif width > height: | |
result = Image.new(pil_img.mode, (width, width), background_color) | |
result.paste(pil_img, (0, (width - height) // 2)) | |
return result | |
else: | |
result = Image.new(pil_img.mode, (height, height), background_color) | |
result.paste(pil_img, ((height - width) // 2, 0)) | |
return result | |
def process_images(images, image_processor, model_cfg): | |
image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None) | |
new_images = [] | |
#print("Current image_aspect_ratio:", image_aspect_ratio) | |
if image_aspect_ratio == 'pad': | |
for image in images: | |
image = expand2square(image, tuple(int(x*255) for x in image_processor.image_mean)) | |
image = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0] | |
new_images.append(image) | |
else: | |
return image_processor(images, return_tensors='pt')['pixel_values'] | |
if all(x.shape == new_images[0].shape for x in new_images): | |
new_images = torch.stack(new_images, dim=0) | |
return new_images | |
def process_videos(frames, image_processor, model_cfg): | |
# this function only used during inference | |
# image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None) | |
# new_frames = [] | |
# print("Current image_aspect_ratio:", image_aspect_ratio) | |
# if image_aspect_ratio == 'pad': | |
# for image in frames: | |
# image = Image.fromarray(image) | |
# image = expand2square(image, tuple(int(x*255) for x in image_processor.image_mean)) | |
# image = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0] | |
# new_frames.append(image) | |
# else: | |
# return image_processor(frames, return_tensors='pt')['pixel_values'] | |
# if all(x.shape == new_frames[0].shape for x in new_frames): | |
# new_frames = torch.stack(new_frames, dim=0) | |
new_frames = image_processor.preprocess(frames, return_tensors='pt')['pixel_values'] # do not pad for video frames | |
return new_frames | |
def create_photo_grid(arr, rows=None, cols=None): | |
""" | |
Create a photo grid from a 4D numpy array with shape [t, h, w, c]. | |
Parameters: | |
arr (numpy.ndarray): Input array with shape [t, h, w, c]. | |
rows (int): Optional. Number of rows in the grid. If not set, it will be determined based on `cols` or the square root of `t`. | |
cols (int): Optional. Number of columns in the grid. If not set, it will be determined based on `rows` or the square root of `t`. | |
Returns: | |
numpy.ndarray: A 3D numpy array representing the photo grid. | |
""" | |
if isinstance(arr, list): | |
if isinstance(arr[0], Image.Image): | |
arr = np.stack([np.array(img) for img in arr]) | |
elif isinstance(arr[0], np.ndarray): | |
arr = np.stack(arr) | |
else: | |
raise ValueError("Invalid input type. Expected list of Images or numpy arrays.") | |
t, h, w, c = arr.shape | |
# Calculate the number of rows and columns if not provided | |
if rows is None and cols is None: | |
rows = math.ceil(math.sqrt(t)) | |
cols = math.ceil(t / rows) | |
elif rows is None: | |
rows = math.ceil(t / cols) | |
elif cols is None: | |
cols = math.ceil(t / rows) | |
# Check if the grid can hold all the images | |
if rows * cols < t: | |
raise ValueError(f"Not enough grid cells ({rows}x{cols}) to hold all images ({t}).") | |
# Create the grid array with appropriate height and width | |
grid_height = h * rows | |
grid_width = w * cols | |
grid = np.zeros((grid_height, grid_width, c), dtype=arr.dtype) | |
# Fill the grid with images | |
for i in range(t): | |
row_idx = i // cols | |
col_idx = i % cols | |
grid[row_idx*h:(row_idx+1)*h, col_idx*w:(col_idx+1)*w, :] = arr[i] | |
return grid | |
def process_image(image_path, processor, aspect_ratio='pad', num_frames=NUM_FRAMES, image_grid=False): | |
image = Image.open(image_path).convert('RGB') | |
if image_grid: | |
pg = np.stack([np.array(image)] * num_frames) | |
grid_h = grid_w = math.ceil(math.sqrt(num_frames)) | |
pg = create_photo_grid(pg, grid_h, grid_w) | |
images = [pg, np.array(image)] | |
else: | |
images = [np.array(image)] | |
if aspect_ratio == 'pad': | |
images = [Image.fromarray(f) for f in images] | |
images = [expand2square(image, tuple(int(x*255) for x in processor.image_mean)) for image in images] | |
else: | |
images = [Image.fromarray(f) for f in images] | |
images = processor.preprocess(images, return_tensors='pt')['pixel_values'] | |
return images | |
def process_video(video_path, processor, aspect_ratio='pad', num_frames=NUM_FRAMES, image_grid=False, sample_scheme='uniform'): | |
def frame_sample(duration, mode='uniform', local_fps=None): | |
if mode == 'uniform': | |
return np.linspace(0, duration-1, num_frames, dtype=int) | |
elif mode == 'fps': | |
assert local_fps is not None | |
segment_len = min(local_fps // NUM_FRAMES_PER_SECOND, duration) | |
return np.arange(segment_len // 2, duration, segment_len, dtype=int) | |
else: | |
raise ImportError(f'Unsupported frame sampling mode: {mode}') | |
if isinstance(video_path, str): | |
if video_path.endswith('.gif'): | |
video_gif = imageio.get_reader(video_path) | |
duration, local_fps = len(video_gif), 10 | |
frame_id_list = frame_sample(duration, mode=sample_scheme, local_fps=local_fps) | |
# limit the max input frames | |
if len(frame_id_list) > MAX_FRAMES: | |
frame_id_list = np.linspace(0, duration-1, MAX_FRAMES, dtype=int) | |
video_data = [frame for index, frame in enumerate(video_gif) if index in frame_id_list] | |
# added by lixin4ever, include the support of .webm files from sthsthv2 | |
elif video_path.endswith('.webm'): | |
video_webm = VideoFileClip(video_path) | |
video_frames = np.array(list(video_webm.iter_frames())) | |
duration, local_fps = len(video_frames), video_webm.fps | |
frame_id_list = frame_sample(duration, mode=sample_scheme, local_fps=local_fps) | |
# limit the max input frames | |
if len(frame_id_list) > MAX_FRAMES: | |
frame_id_list = np.linspace(0, duration-1, MAX_FRAMES, dtype=int) | |
video_data = video_frames[frame_id_list] | |
else: | |
decord_vr = VideoReader(uri=video_path, ctx=cpu(0)) if "Valley/finetune/source_videos" not in video_path else VideoReader(uri=video_path, ctx=cpu(0), num_threads=1) # add num_threads=1 for Valley videos | |
duration, local_fps = len(decord_vr), float(decord_vr.get_avg_fps()) | |
frame_id_list = frame_sample(duration, mode=sample_scheme, local_fps=local_fps) | |
# limit the max input frames | |
if len(frame_id_list) > MAX_FRAMES: | |
frame_id_list = np.linspace(0, duration-1, MAX_FRAMES, dtype=int) | |
try: | |
video_data = decord_vr.get_batch(frame_id_list).numpy() | |
except: | |
video_data = decord_vr.get_batch(frame_id_list).asnumpy() | |
# if self.data_args.use_temp_aug: | |
# frame_id_list = np.linspace(0, duration-1, num_frames * 2 * 2, dtype=int) | |
# video_data = decord_vr.get_batch(frame_id_list) | |
# video_frames = [Image.fromarray(f) for f in video_data.numpy()] | |
# chunked_video_frames = chunk_list(video_frames, 2*2) | |
# video_data = [frame_expansion(frame_list, 2) for frame_list in chunked_video_frames] | |
else: | |
video = video_path | |
frame_id_list = frame_sample(duration, mode='uniform') | |
video_data = [video.get_data(frame_id) for frame_id in frame_id_list] | |
if image_grid: | |
grid_h = grid_w = math.ceil(math.sqrt(num_frames)) | |
pg = create_photo_grid(video_data, grid_h, grid_w) | |
video_data = [pg, *video_data] | |
if aspect_ratio == 'pad': | |
images = [Image.fromarray(f.numpy() if isinstance(f, torch.Tensor) else f) for f in video_data] | |
images = [expand2square(image, tuple(int(x*255) for x in processor.image_mean)) for image in images] | |
video = processor.preprocess(images, return_tensors='pt')['pixel_values'] | |
else: | |
images = [Image.fromarray(f.numpy() if isinstance(f, torch.Tensor) else f) for f in video_data] | |
video = processor.preprocess(images, return_tensors='pt')['pixel_values'] | |
return video | |
def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None): | |
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('<image>')] | |
def insert_separator(X, sep): | |
return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1] | |
input_ids = [] | |
offset = 0 | |
if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id: | |
offset = 1 | |
input_ids.append(prompt_chunks[0][0]) | |
for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)): | |
input_ids.extend(x[offset:]) | |
if return_tensors is not None: | |
if return_tensors == 'pt': | |
return torch.tensor(input_ids, dtype=torch.long) | |
raise ValueError(f'Unsupported tensor type: {return_tensors}') | |
return input_ids | |
def tokenizer_MMODAL_token(prompt, tokenizer, MMODAL_token_index=IMAGE_TOKEN_INDEX, return_tensors=None): | |
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split(f'<{MMODAL_INDEX_TOKEN[MMODAL_token_index].lower()}>')] | |
num_prompt_chunks = len(prompt.split(f'<{MMODAL_INDEX_TOKEN[MMODAL_token_index].lower()}>')) | |
def insert_separator(X, sep): | |
return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1] | |
input_ids = [] | |
offset = 0 | |
if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id: | |
offset = 1 | |
input_ids.append(prompt_chunks[0][0]) | |
for x in insert_separator(prompt_chunks, [MMODAL_token_index] * (offset + 1)): | |
input_ids.extend(x[offset:]) | |
if return_tensors is not None: | |
if return_tensors == 'pt': | |
return torch.tensor(input_ids, dtype=torch.long) | |
raise ValueError(f'Unsupported tensor type: {return_tensors}') | |
return input_ids | |
def get_model_name_from_path(model_path): | |
model_path = model_path.strip("/") | |
model_paths = model_path.split("/") | |
if model_paths[-1].startswith('checkpoint-'): | |
return model_paths[-2] + "_" + model_paths[-1] | |
else: | |
return model_paths[-1] | |
class KeywordsStoppingCriteria(StoppingCriteria): | |
def __init__(self, keywords, tokenizer, input_ids): | |
self.keywords = keywords | |
self.keyword_ids = [] | |
self.max_keyword_len = 0 | |
for keyword in keywords: | |
cur_keyword_ids = tokenizer(keyword).input_ids | |
if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id: | |
cur_keyword_ids = cur_keyword_ids[1:] | |
if len(cur_keyword_ids) > self.max_keyword_len: | |
self.max_keyword_len = len(cur_keyword_ids) | |
self.keyword_ids.append(torch.tensor(cur_keyword_ids)) | |
self.tokenizer = tokenizer | |
self.start_len = input_ids.shape[1] | |
def call_for_batch(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: | |
offset = min(output_ids.shape[1] - self.start_len, self.max_keyword_len) | |
self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids] | |
for keyword_id in self.keyword_ids: | |
if (output_ids[0, -keyword_id.shape[0]:] == keyword_id).all(): | |
return True | |
outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0] | |
for keyword in self.keywords: | |
if keyword in outputs: | |
return True | |
return False | |
def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: | |
outputs = [] | |
for i in range(output_ids.shape[0]): | |
outputs.append(self.call_for_batch(output_ids[i].unsqueeze(0), scores)) | |
return all(outputs) | |