Spaces:
Running
on
Zero
Running
on
Zero
Update demo.
Browse files
VideoLLaMA2/videollama2/__init__.py
CHANGED
@@ -48,9 +48,19 @@ def mm_infer(image_or_video, instruct, model, tokenizer, modal='video', **kwargs
|
|
48 |
modal_token = DEFAULT_IMAGE_TOKEN
|
49 |
elif modal == 'video':
|
50 |
modal_token = DEFAULT_VIDEO_TOKEN
|
|
|
|
|
51 |
else:
|
52 |
raise ValueError(f"Unsupported modal: {modal}")
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
if isinstance(instruct, str):
|
55 |
message = [{'role': 'user', 'content': modal_token + '\n' + instruct}]
|
56 |
elif isinstance(instruct, list):
|
@@ -76,11 +86,6 @@ def mm_infer(image_or_video, instruct, model, tokenizer, modal='video', **kwargs
|
|
76 |
input_ids = tokenizer_multimodal_token(prompt, tokenizer, modal_token, return_tensors='pt').unsqueeze(0).long().cuda()
|
77 |
attention_masks = input_ids.ne(tokenizer.pad_token_id).long().cuda()
|
78 |
|
79 |
-
# 2. vision preprocess (load & transform image or video).
|
80 |
-
tensor = image_or_video.half().cuda()
|
81 |
-
|
82 |
-
tensor = [(tensor, modal_token)]
|
83 |
-
|
84 |
# 3. generate response according to visual signals and prompts.
|
85 |
keywords = [tokenizer.eos_token]
|
86 |
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
|
|
|
48 |
modal_token = DEFAULT_IMAGE_TOKEN
|
49 |
elif modal == 'video':
|
50 |
modal_token = DEFAULT_VIDEO_TOKEN
|
51 |
+
elif modal == 'text':
|
52 |
+
modal_token = ''
|
53 |
else:
|
54 |
raise ValueError(f"Unsupported modal: {modal}")
|
55 |
|
56 |
+
# 1. vision preprocess (load & transform image or video).
|
57 |
+
if modal == 'text':
|
58 |
+
tensor = None
|
59 |
+
else:
|
60 |
+
tensor = image_or_video.half().cuda()
|
61 |
+
tensor = [(tensor, modal_token)]
|
62 |
+
|
63 |
+
# 2. text preprocess (tag process & generate prompt).
|
64 |
if isinstance(instruct, str):
|
65 |
message = [{'role': 'user', 'content': modal_token + '\n' + instruct}]
|
66 |
elif isinstance(instruct, list):
|
|
|
86 |
input_ids = tokenizer_multimodal_token(prompt, tokenizer, modal_token, return_tensors='pt').unsqueeze(0).long().cuda()
|
87 |
attention_masks = input_ids.ne(tokenizer.pad_token_id).long().cuda()
|
88 |
|
|
|
|
|
|
|
|
|
|
|
89 |
# 3. generate response according to visual signals and prompts.
|
90 |
keywords = [tokenizer.eos_token]
|
91 |
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
|
VideoLLaMA2/videollama2/eval/eval_video_oqa_activitynet.py
CHANGED
@@ -5,7 +5,7 @@ import time
|
|
5 |
import argparse
|
6 |
import traceback
|
7 |
from tqdm import tqdm
|
8 |
-
from
|
9 |
|
10 |
from openai import AzureOpenAI
|
11 |
|
@@ -71,12 +71,13 @@ def prompt_gpt(question, answer, pred, key, qa_set, output_dir):
|
|
71 |
json.dump(result_qa_pair, f)
|
72 |
|
73 |
|
74 |
-
def annotate(
|
75 |
"""
|
76 |
Evaluates question and answer pairs using GPT-3
|
77 |
Returns a score for correctness.
|
78 |
"""
|
79 |
-
|
|
|
80 |
for file in tqdm(caption_files):
|
81 |
key = file[:-5] # Strip file extension
|
82 |
qa_set = prediction_set[key]
|
@@ -86,8 +87,8 @@ def annotate(prediction_set, caption_files, output_dir, args):
|
|
86 |
try:
|
87 |
prompt_gpt(question, answer, pred, key, qa_set, output_dir)
|
88 |
except Exception as e:
|
89 |
-
traceback.print_exc()
|
90 |
prompt_gpt(question, answer, pred[:50], key, qa_set, output_dir)
|
|
|
91 |
|
92 |
time.sleep(1)
|
93 |
|
@@ -141,39 +142,29 @@ def main(args):
|
|
141 |
task_args = [(prediction_set, part, args.output_dir, args) for part in all_parts]
|
142 |
|
143 |
# Use a pool of workers to process the files in parallel.
|
144 |
-
with
|
145 |
-
|
146 |
|
147 |
except Exception as e:
|
148 |
print(f"Error: {e}")
|
149 |
|
150 |
-
#
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
content = json.load(json_file)
|
161 |
-
except:
|
162 |
-
print(json_file)
|
163 |
-
exit(0)
|
164 |
-
combined_contents[file_name[:-5]] = content
|
165 |
-
|
166 |
-
# Write combined content to a json file
|
167 |
-
with open(json_path, "w") as json_file:
|
168 |
-
json.dump(combined_contents, json_file)
|
169 |
-
print("All evaluation completed!")
|
170 |
|
171 |
# Calculate average score and accuracy
|
172 |
score_sum = 0
|
173 |
count = 0
|
174 |
yes_count = 0
|
175 |
no_count = 0
|
176 |
-
for key, result in tqdm(combined_contents
|
177 |
try:
|
178 |
# Computing score
|
179 |
count += 1
|
|
|
5 |
import argparse
|
6 |
import traceback
|
7 |
from tqdm import tqdm
|
8 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
9 |
|
10 |
from openai import AzureOpenAI
|
11 |
|
|
|
71 |
json.dump(result_qa_pair, f)
|
72 |
|
73 |
|
74 |
+
def annotate(task_arg):
|
75 |
"""
|
76 |
Evaluates question and answer pairs using GPT-3
|
77 |
Returns a score for correctness.
|
78 |
"""
|
79 |
+
prediction_set, caption_files, output_dir, args = task_arg
|
80 |
+
|
81 |
for file in tqdm(caption_files):
|
82 |
key = file[:-5] # Strip file extension
|
83 |
qa_set = prediction_set[key]
|
|
|
87 |
try:
|
88 |
prompt_gpt(question, answer, pred, key, qa_set, output_dir)
|
89 |
except Exception as e:
|
|
|
90 |
prompt_gpt(question, answer, pred[:50], key, qa_set, output_dir)
|
91 |
+
traceback.print_exc()
|
92 |
|
93 |
time.sleep(1)
|
94 |
|
|
|
142 |
task_args = [(prediction_set, part, args.output_dir, args) for part in all_parts]
|
143 |
|
144 |
# Use a pool of workers to process the files in parallel.
|
145 |
+
with ThreadPoolExecutor(max_workers=args.num_tasks) as executor:
|
146 |
+
list(tqdm(executor.map(annotate, task_args), total=len(task_args)))
|
147 |
|
148 |
except Exception as e:
|
149 |
print(f"Error: {e}")
|
150 |
|
151 |
+
# multiprocessing to combine json files
|
152 |
+
def combine_json(file_name):
|
153 |
+
file_path = os.path.join(output_dir, file_name)
|
154 |
+
with open(file_path, "r") as json_file:
|
155 |
+
content = json.load(json_file)
|
156 |
+
return (file_name[:-5], content)
|
157 |
+
|
158 |
+
files = os.listdir(output_dir)
|
159 |
+
with ThreadPoolExecutor(max_workers=64) as executor:
|
160 |
+
combined_contents = list(tqdm(executor.map(combine_json, files), total=len(files)))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
|
162 |
# Calculate average score and accuracy
|
163 |
score_sum = 0
|
164 |
count = 0
|
165 |
yes_count = 0
|
166 |
no_count = 0
|
167 |
+
for key, result in tqdm(combined_contents):
|
168 |
try:
|
169 |
# Computing score
|
170 |
count += 1
|
VideoLLaMA2/videollama2/serve/gradio_web_server_adhoc.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
-
|
2 |
|
3 |
import os
|
|
|
4 |
|
5 |
import torch
|
6 |
import gradio as gr
|
@@ -79,7 +80,7 @@ class Chat:
|
|
79 |
|
80 |
self.model, self.processor, self.tokenizer = model_init(model_path, load_8bit=load_8bit, load_4bit=load_4bit)
|
81 |
|
82 |
-
|
83 |
@torch.inference_mode()
|
84 |
def generate(self, data: list, message, temperature, top_p, max_output_tokens):
|
85 |
# TODO: support multiple turns of conversation.
|
@@ -95,41 +96,62 @@ class Chat:
|
|
95 |
return response
|
96 |
|
97 |
|
98 |
-
|
99 |
def generate(image, video, message, chatbot, textbox_in, temperature, top_p, max_output_tokens, dtype=torch.float16):
|
100 |
data = []
|
101 |
|
102 |
-
image = image if image else "none"
|
103 |
-
video = video if video else "none"
|
104 |
-
assert not (os.path.exists(image) and os.path.exists(video))
|
105 |
-
|
106 |
processor = handler.processor
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
|
114 |
assert len(message) % 2 == 0, "The message should be a pair of user and system message."
|
115 |
|
116 |
-
message.append({'role': 'user', 'content': textbox_in})
|
117 |
-
text_en_out = handler.generate(data, message, temperature=temperature, top_p=top_p, max_output_tokens=max_output_tokens)
|
118 |
-
message.append({'role': 'assistant', 'content': text_en_out})
|
119 |
-
|
120 |
show_images = ""
|
121 |
-
if
|
122 |
show_images += f'<img src="./file={image}" style="display: inline-block;width: 250px;max-height: 400px;">'
|
123 |
-
if
|
124 |
show_images += f'<video controls playsinline width="500" style="display: inline-block;" src="./file={video}"></video>'
|
125 |
|
126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
-
return (
|
129 |
-
gr.update(value=image if os.path.exists(image) else None, interactive=True),
|
130 |
-
gr.update(value=video if os.path.exists(video) else None, interactive=True),
|
131 |
-
message,
|
132 |
-
chatbot)
|
133 |
|
134 |
|
135 |
def regenerate(message, chatbot):
|
@@ -147,7 +169,7 @@ def clear_history(message, chatbot):
|
|
147 |
|
148 |
|
149 |
# BUG of Zero Environment
|
150 |
-
# 1. The environment is fixed to torch
|
151 |
# 2. The operation or tensor which requires cuda are limited in those functions wrapped via spaces.GPU
|
152 |
# 3. The function can't return tensor or other cuda objects.
|
153 |
|
|
|
1 |
+
import spaces
|
2 |
|
3 |
import os
|
4 |
+
import re
|
5 |
|
6 |
import torch
|
7 |
import gradio as gr
|
|
|
80 |
|
81 |
self.model, self.processor, self.tokenizer = model_init(model_path, load_8bit=load_8bit, load_4bit=load_4bit)
|
82 |
|
83 |
+
@spaces.GPU(duration=120)
|
84 |
@torch.inference_mode()
|
85 |
def generate(self, data: list, message, temperature, top_p, max_output_tokens):
|
86 |
# TODO: support multiple turns of conversation.
|
|
|
96 |
return response
|
97 |
|
98 |
|
99 |
+
@spaces.GPU(duration=120)
|
100 |
def generate(image, video, message, chatbot, textbox_in, temperature, top_p, max_output_tokens, dtype=torch.float16):
|
101 |
data = []
|
102 |
|
|
|
|
|
|
|
|
|
103 |
processor = handler.processor
|
104 |
+
try:
|
105 |
+
if image is not None:
|
106 |
+
data.append((processor['image'](image).to(handler.model.device, dtype=dtype), '<image>'))
|
107 |
+
elif video is not None:
|
108 |
+
data.append((processor['video'](video).to(handler.model.device, dtype=dtype), '<video>'))
|
109 |
+
elif image is None and video is None:
|
110 |
+
data.append((None, '<text>'))
|
111 |
+
else:
|
112 |
+
raise NotImplementedError("Not support image and video at the same time")
|
113 |
+
except Exception as e:
|
114 |
+
traceback.print_exc()
|
115 |
+
return gr.update(value=None, interactive=True), gr.update(value=None, interactive=True), message, chatbot
|
116 |
|
117 |
assert len(message) % 2 == 0, "The message should be a pair of user and system message."
|
118 |
|
|
|
|
|
|
|
|
|
119 |
show_images = ""
|
120 |
+
if image is not None:
|
121 |
show_images += f'<img src="./file={image}" style="display: inline-block;width: 250px;max-height: 400px;">'
|
122 |
+
if video is not None:
|
123 |
show_images += f'<video controls playsinline width="500" style="display: inline-block;" src="./file={video}"></video>'
|
124 |
|
125 |
+
one_turn_chat = [textbox_in, None]
|
126 |
+
|
127 |
+
# 1. first run case
|
128 |
+
if len(chatbot) == 0:
|
129 |
+
one_turn_chat[0] += "\n" + show_images
|
130 |
+
# 2. not first run case
|
131 |
+
else:
|
132 |
+
previous_image = re.findall(r'<img src="./file=(.+?)"', chatbot[0][0])
|
133 |
+
previous_video = re.findall(r'<video controls playsinline width="500" style="display: inline-block;" src="./file=(.+?)"', chatbot[0][0])
|
134 |
+
if len(previous_image) > 0:
|
135 |
+
previous_image = previous_image[0]
|
136 |
+
# 2.1 new image append or pure text input will start a new conversation
|
137 |
+
if previous_image != image:
|
138 |
+
message.clear()
|
139 |
+
one_turn_chat[0] += "\n" + show_images if image is not None else ""
|
140 |
+
elif len(previous_video) > 0:
|
141 |
+
previous_video = previous_video[0]
|
142 |
+
# 2.2 new video append or pure text input will start a new conversation
|
143 |
+
if previous_video != video:
|
144 |
+
message.clear()
|
145 |
+
one_turn_chat[0] += "\n" + show_images if video is not None else ""
|
146 |
+
|
147 |
+
message.append({'role': 'user', 'content': textbox_in})
|
148 |
+
text_en_out = handler.generate(data, message, temperature=temperature, top_p=top_p, max_output_tokens=max_output_tokens)
|
149 |
+
message.append({'role': 'assistant', 'content': text_en_out})
|
150 |
+
|
151 |
+
one_turn_chat[1] = text_en_out
|
152 |
+
chatbot.append(one_turn_chat)
|
153 |
|
154 |
+
return gr.update(value=image, interactive=True), gr.update(value=video, interactive=True), message, chatbot
|
|
|
|
|
|
|
|
|
155 |
|
156 |
|
157 |
def regenerate(message, chatbot):
|
|
|
169 |
|
170 |
|
171 |
# BUG of Zero Environment
|
172 |
+
# 1. The environment is fixed to torch>=2.0,<=2.2, gradio>=4.x.x
|
173 |
# 2. The operation or tensor which requires cuda are limited in those functions wrapped via spaces.GPU
|
174 |
# 3. The function can't return tensor or other cuda objects.
|
175 |
|
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import spaces
|
2 |
|
3 |
import os
|
|
|
4 |
|
5 |
import torch
|
6 |
import gradio as gr
|
@@ -19,7 +20,6 @@ title_markdown = ("""
|
|
19 |
<div>
|
20 |
<h1 >VideoLLaMA 2: Advancing Spatial-Temporal Modeling and Audio Understanding in Video-LLMs</h1>
|
21 |
<h5 style="margin: 0;">If this demo please you, please give us a star β on Github or π on this space.</h5>
|
22 |
-
<h6 style="margin: 0;">Note that the current demo only supports <b>vision input</b> and <b>single-turn conversation</b>. More features will be available soon.</h6>
|
23 |
</div>
|
24 |
</div>
|
25 |
|
@@ -100,37 +100,58 @@ class Chat:
|
|
100 |
def generate(image, video, message, chatbot, textbox_in, temperature, top_p, max_output_tokens, dtype=torch.float16):
|
101 |
data = []
|
102 |
|
103 |
-
image = image if image else "none"
|
104 |
-
video = video if video else "none"
|
105 |
-
assert not (os.path.exists(image) and os.path.exists(video))
|
106 |
-
|
107 |
processor = handler.processor
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
assert len(message) % 2 == 0, "The message should be a pair of user and system message."
|
116 |
|
117 |
-
message.append({'role': 'user', 'content': textbox_in})
|
118 |
-
text_en_out = handler.generate(data, message, temperature=temperature, top_p=top_p, max_output_tokens=max_output_tokens)
|
119 |
-
message.append({'role': 'assistant', 'content': text_en_out})
|
120 |
-
|
121 |
show_images = ""
|
122 |
-
if
|
123 |
show_images += f'<img src="./file={image}" style="display: inline-block;width: 250px;max-height: 400px;">'
|
124 |
-
if
|
125 |
show_images += f'<video controls playsinline width="500" style="display: inline-block;" src="./file={video}"></video>'
|
126 |
|
127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
chatbot)
|
134 |
|
135 |
|
136 |
def regenerate(message, chatbot):
|
@@ -148,26 +169,25 @@ def clear_history(message, chatbot):
|
|
148 |
|
149 |
|
150 |
# BUG of Zero Environment
|
151 |
-
# 1. The environment is fixed to torch
|
152 |
# 2. The operation or tensor which requires cuda are limited in those functions wrapped via spaces.GPU
|
153 |
# 3. The function can't return tensor or other cuda objects.
|
154 |
|
155 |
-
conv_mode = "llama_2"
|
156 |
model_path = 'DAMO-NLP-SG/VideoLLaMA2-7B-16F'
|
157 |
|
158 |
-
device = torch.device("cuda")
|
159 |
-
|
160 |
handler = Chat(model_path, load_8bit=False, load_4bit=True)
|
161 |
|
162 |
textbox = gr.Textbox(show_label=False, placeholder="Enter text and press ENTER", container=False)
|
163 |
|
164 |
theme = gr.themes.Default(primary_hue=plum_color)
|
|
|
165 |
theme.set(slider_color="#9C276A")
|
166 |
theme.set(block_title_text_color="#9C276A")
|
167 |
theme.set(block_label_text_color="#9C276A")
|
168 |
theme.set(button_primary_text_color="#9C276A")
|
169 |
# theme.set(button_secondary_text_color="*neutral_800")
|
170 |
|
|
|
171 |
with gr.Blocks(title='VideoLLaMA 2 π₯ππ₯', theme=theme, css=block_css) as demo:
|
172 |
gr.Markdown(title_markdown)
|
173 |
message = gr.State([])
|
@@ -235,16 +255,16 @@ with gr.Blocks(title='VideoLLaMA 2 π₯ππ₯', theme=theme, css=block_css) as
|
|
235 |
gr.Examples(
|
236 |
examples=[
|
237 |
[
|
238 |
-
f"{cur_dir}/examples/
|
239 |
"What happens in this image?",
|
240 |
],
|
241 |
[
|
242 |
f"{cur_dir}/examples/waterview.jpg",
|
243 |
-
"What
|
244 |
],
|
245 |
[
|
246 |
f"{cur_dir}/examples/desert.jpg",
|
247 |
-
"If there are factual errors in the questions, point
|
248 |
],
|
249 |
],
|
250 |
inputs=[image, textbox],
|
@@ -253,22 +273,22 @@ with gr.Blocks(title='VideoLLaMA 2 π₯ππ₯', theme=theme, css=block_css) as
|
|
253 |
gr.Examples(
|
254 |
examples=[
|
255 |
[
|
256 |
-
f"{cur_dir}/
|
257 |
"What happens in this video?",
|
258 |
],
|
259 |
[
|
260 |
-
f"{cur_dir}/
|
261 |
-
"
|
262 |
],
|
263 |
[
|
264 |
-
f"{cur_dir}/examples/
|
265 |
-
"
|
266 |
],
|
267 |
],
|
268 |
inputs=[video, textbox],
|
269 |
)
|
270 |
|
271 |
-
|
272 |
gr.Markdown(learn_more_markdown)
|
273 |
|
274 |
submit_btn.click(
|
|
|
1 |
import spaces
|
2 |
|
3 |
import os
|
4 |
+
import re
|
5 |
|
6 |
import torch
|
7 |
import gradio as gr
|
|
|
20 |
<div>
|
21 |
<h1 >VideoLLaMA 2: Advancing Spatial-Temporal Modeling and Audio Understanding in Video-LLMs</h1>
|
22 |
<h5 style="margin: 0;">If this demo please you, please give us a star β on Github or π on this space.</h5>
|
|
|
23 |
</div>
|
24 |
</div>
|
25 |
|
|
|
100 |
def generate(image, video, message, chatbot, textbox_in, temperature, top_p, max_output_tokens, dtype=torch.float16):
|
101 |
data = []
|
102 |
|
|
|
|
|
|
|
|
|
103 |
processor = handler.processor
|
104 |
+
try:
|
105 |
+
if image is not None:
|
106 |
+
data.append((processor['image'](image).to(handler.model.device, dtype=dtype), '<image>'))
|
107 |
+
elif video is not None:
|
108 |
+
data.append((processor['video'](video).to(handler.model.device, dtype=dtype), '<video>'))
|
109 |
+
elif image is None and video is None:
|
110 |
+
data.append((None, '<text>'))
|
111 |
+
else:
|
112 |
+
raise NotImplementedError("Not support image and video at the same time")
|
113 |
+
except Exception as e:
|
114 |
+
traceback.print_exc()
|
115 |
+
return gr.update(value=None, interactive=True), gr.update(value=None, interactive=True), message, chatbot
|
116 |
|
117 |
assert len(message) % 2 == 0, "The message should be a pair of user and system message."
|
118 |
|
|
|
|
|
|
|
|
|
119 |
show_images = ""
|
120 |
+
if image is not None:
|
121 |
show_images += f'<img src="./file={image}" style="display: inline-block;width: 250px;max-height: 400px;">'
|
122 |
+
if video is not None:
|
123 |
show_images += f'<video controls playsinline width="500" style="display: inline-block;" src="./file={video}"></video>'
|
124 |
|
125 |
+
one_turn_chat = [textbox_in, None]
|
126 |
+
|
127 |
+
# 1. first run case
|
128 |
+
if len(chatbot) == 0:
|
129 |
+
one_turn_chat[0] += "\n" + show_images
|
130 |
+
# 2. not first run case
|
131 |
+
else:
|
132 |
+
previous_image = re.findall(r'<img src="./file=(.+?)"', chatbot[0][0])
|
133 |
+
previous_video = re.findall(r'<video controls playsinline width="500" style="display: inline-block;" src="./file=(.+?)"', chatbot[0][0])
|
134 |
+
if len(previous_image) > 0:
|
135 |
+
previous_image = previous_image[0]
|
136 |
+
# 2.1 new image append or pure text input will start a new conversation
|
137 |
+
if previous_image != image:
|
138 |
+
message.clear()
|
139 |
+
one_turn_chat[0] += "\n" + show_images if image is not None else ""
|
140 |
+
elif len(previous_video) > 0:
|
141 |
+
previous_video = previous_video[0]
|
142 |
+
# 2.2 new video append or pure text input will start a new conversation
|
143 |
+
if previous_video != video:
|
144 |
+
message.clear()
|
145 |
+
one_turn_chat[0] += "\n" + show_images if video is not None else ""
|
146 |
+
|
147 |
+
message.append({'role': 'user', 'content': textbox_in})
|
148 |
+
text_en_out = handler.generate(data, message, temperature=temperature, top_p=top_p, max_output_tokens=max_output_tokens)
|
149 |
+
message.append({'role': 'assistant', 'content': text_en_out})
|
150 |
|
151 |
+
one_turn_chat[1] = text_en_out
|
152 |
+
chatbot.append(one_turn_chat)
|
153 |
+
|
154 |
+
return gr.update(value=image, interactive=True), gr.update(value=video, interactive=True), message, chatbot
|
|
|
155 |
|
156 |
|
157 |
def regenerate(message, chatbot):
|
|
|
169 |
|
170 |
|
171 |
# BUG of Zero Environment
|
172 |
+
# 1. The environment is fixed to torch>=2.0,<=2.2, gradio>=4.x.x
|
173 |
# 2. The operation or tensor which requires cuda are limited in those functions wrapped via spaces.GPU
|
174 |
# 3. The function can't return tensor or other cuda objects.
|
175 |
|
|
|
176 |
model_path = 'DAMO-NLP-SG/VideoLLaMA2-7B-16F'
|
177 |
|
|
|
|
|
178 |
handler = Chat(model_path, load_8bit=False, load_4bit=True)
|
179 |
|
180 |
textbox = gr.Textbox(show_label=False, placeholder="Enter text and press ENTER", container=False)
|
181 |
|
182 |
theme = gr.themes.Default(primary_hue=plum_color)
|
183 |
+
# theme.update_color("primary", plum_color.c500)
|
184 |
theme.set(slider_color="#9C276A")
|
185 |
theme.set(block_title_text_color="#9C276A")
|
186 |
theme.set(block_label_text_color="#9C276A")
|
187 |
theme.set(button_primary_text_color="#9C276A")
|
188 |
# theme.set(button_secondary_text_color="*neutral_800")
|
189 |
|
190 |
+
|
191 |
with gr.Blocks(title='VideoLLaMA 2 π₯ππ₯', theme=theme, css=block_css) as demo:
|
192 |
gr.Markdown(title_markdown)
|
193 |
message = gr.State([])
|
|
|
255 |
gr.Examples(
|
256 |
examples=[
|
257 |
[
|
258 |
+
f"{cur_dir}/examples/extreme_ironing.jpg",
|
259 |
"What happens in this image?",
|
260 |
],
|
261 |
[
|
262 |
f"{cur_dir}/examples/waterview.jpg",
|
263 |
+
"What are the things I should be cautious about when I visit here?",
|
264 |
],
|
265 |
[
|
266 |
f"{cur_dir}/examples/desert.jpg",
|
267 |
+
"If there are factual errors in the questions, point it out; if not, proceed answering the question. Whatβs happening in the desert?",
|
268 |
],
|
269 |
],
|
270 |
inputs=[image, textbox],
|
|
|
273 |
gr.Examples(
|
274 |
examples=[
|
275 |
[
|
276 |
+
f"{cur_dir}/../../assets/cat_and_chicken.mp4",
|
277 |
"What happens in this video?",
|
278 |
],
|
279 |
[
|
280 |
+
f"{cur_dir}/../../assets/sora.mp4",
|
281 |
+
"Please describe this video.",
|
282 |
],
|
283 |
[
|
284 |
+
f"{cur_dir}/examples/sample_demo_1.mp4",
|
285 |
+
"What does the baby do?",
|
286 |
],
|
287 |
],
|
288 |
inputs=[video, textbox],
|
289 |
)
|
290 |
|
291 |
+
gr.Markdown(tos_markdown)
|
292 |
gr.Markdown(learn_more_markdown)
|
293 |
|
294 |
submit_btn.click(
|