ClownRat commited on
Commit
5ad0be8
β€’
1 Parent(s): 5f06f81

Update demo.

Browse files
VideoLLaMA2/videollama2/__init__.py CHANGED
@@ -48,9 +48,19 @@ def mm_infer(image_or_video, instruct, model, tokenizer, modal='video', **kwargs
48
  modal_token = DEFAULT_IMAGE_TOKEN
49
  elif modal == 'video':
50
  modal_token = DEFAULT_VIDEO_TOKEN
 
 
51
  else:
52
  raise ValueError(f"Unsupported modal: {modal}")
53
 
 
 
 
 
 
 
 
 
54
  if isinstance(instruct, str):
55
  message = [{'role': 'user', 'content': modal_token + '\n' + instruct}]
56
  elif isinstance(instruct, list):
@@ -76,11 +86,6 @@ def mm_infer(image_or_video, instruct, model, tokenizer, modal='video', **kwargs
76
  input_ids = tokenizer_multimodal_token(prompt, tokenizer, modal_token, return_tensors='pt').unsqueeze(0).long().cuda()
77
  attention_masks = input_ids.ne(tokenizer.pad_token_id).long().cuda()
78
 
79
- # 2. vision preprocess (load & transform image or video).
80
- tensor = image_or_video.half().cuda()
81
-
82
- tensor = [(tensor, modal_token)]
83
-
84
  # 3. generate response according to visual signals and prompts.
85
  keywords = [tokenizer.eos_token]
86
  stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
 
48
  modal_token = DEFAULT_IMAGE_TOKEN
49
  elif modal == 'video':
50
  modal_token = DEFAULT_VIDEO_TOKEN
51
+ elif modal == 'text':
52
+ modal_token = ''
53
  else:
54
  raise ValueError(f"Unsupported modal: {modal}")
55
 
56
+ # 1. vision preprocess (load & transform image or video).
57
+ if modal == 'text':
58
+ tensor = None
59
+ else:
60
+ tensor = image_or_video.half().cuda()
61
+ tensor = [(tensor, modal_token)]
62
+
63
+ # 2. text preprocess (tag process & generate prompt).
64
  if isinstance(instruct, str):
65
  message = [{'role': 'user', 'content': modal_token + '\n' + instruct}]
66
  elif isinstance(instruct, list):
 
86
  input_ids = tokenizer_multimodal_token(prompt, tokenizer, modal_token, return_tensors='pt').unsqueeze(0).long().cuda()
87
  attention_masks = input_ids.ne(tokenizer.pad_token_id).long().cuda()
88
 
 
 
 
 
 
89
  # 3. generate response according to visual signals and prompts.
90
  keywords = [tokenizer.eos_token]
91
  stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
VideoLLaMA2/videollama2/eval/eval_video_oqa_activitynet.py CHANGED
@@ -5,7 +5,7 @@ import time
5
  import argparse
6
  import traceback
7
  from tqdm import tqdm
8
- from multiprocessing.pool import Pool
9
 
10
  from openai import AzureOpenAI
11
 
@@ -71,12 +71,13 @@ def prompt_gpt(question, answer, pred, key, qa_set, output_dir):
71
  json.dump(result_qa_pair, f)
72
 
73
 
74
- def annotate(prediction_set, caption_files, output_dir, args):
75
  """
76
  Evaluates question and answer pairs using GPT-3
77
  Returns a score for correctness.
78
  """
79
-
 
80
  for file in tqdm(caption_files):
81
  key = file[:-5] # Strip file extension
82
  qa_set = prediction_set[key]
@@ -86,8 +87,8 @@ def annotate(prediction_set, caption_files, output_dir, args):
86
  try:
87
  prompt_gpt(question, answer, pred, key, qa_set, output_dir)
88
  except Exception as e:
89
- traceback.print_exc()
90
  prompt_gpt(question, answer, pred[:50], key, qa_set, output_dir)
 
91
 
92
  time.sleep(1)
93
 
@@ -141,39 +142,29 @@ def main(args):
141
  task_args = [(prediction_set, part, args.output_dir, args) for part in all_parts]
142
 
143
  # Use a pool of workers to process the files in parallel.
144
- with Pool() as pool:
145
- pool.starmap(annotate, task_args)
146
 
147
  except Exception as e:
148
  print(f"Error: {e}")
149
 
150
- # Combine all the processed files into one
151
- combined_contents = {}
152
- json_path = args.output_json
153
-
154
- # Iterate through json files
155
- for file_name in tqdm(os.listdir(output_dir)):
156
- if file_name.endswith(".json"):
157
- file_path = os.path.join(output_dir, file_name)
158
- with open(file_path, "r") as json_file:
159
- try:
160
- content = json.load(json_file)
161
- except:
162
- print(json_file)
163
- exit(0)
164
- combined_contents[file_name[:-5]] = content
165
-
166
- # Write combined content to a json file
167
- with open(json_path, "w") as json_file:
168
- json.dump(combined_contents, json_file)
169
- print("All evaluation completed!")
170
 
171
  # Calculate average score and accuracy
172
  score_sum = 0
173
  count = 0
174
  yes_count = 0
175
  no_count = 0
176
- for key, result in tqdm(combined_contents.items()):
177
  try:
178
  # Computing score
179
  count += 1
 
5
  import argparse
6
  import traceback
7
  from tqdm import tqdm
8
+ from concurrent.futures import ThreadPoolExecutor, as_completed
9
 
10
  from openai import AzureOpenAI
11
 
 
71
  json.dump(result_qa_pair, f)
72
 
73
 
74
+ def annotate(task_arg):
75
  """
76
  Evaluates question and answer pairs using GPT-3
77
  Returns a score for correctness.
78
  """
79
+ prediction_set, caption_files, output_dir, args = task_arg
80
+
81
  for file in tqdm(caption_files):
82
  key = file[:-5] # Strip file extension
83
  qa_set = prediction_set[key]
 
87
  try:
88
  prompt_gpt(question, answer, pred, key, qa_set, output_dir)
89
  except Exception as e:
 
90
  prompt_gpt(question, answer, pred[:50], key, qa_set, output_dir)
91
+ traceback.print_exc()
92
 
93
  time.sleep(1)
94
 
 
142
  task_args = [(prediction_set, part, args.output_dir, args) for part in all_parts]
143
 
144
  # Use a pool of workers to process the files in parallel.
145
+ with ThreadPoolExecutor(max_workers=args.num_tasks) as executor:
146
+ list(tqdm(executor.map(annotate, task_args), total=len(task_args)))
147
 
148
  except Exception as e:
149
  print(f"Error: {e}")
150
 
151
+ # multiprocessing to combine json files
152
+ def combine_json(file_name):
153
+ file_path = os.path.join(output_dir, file_name)
154
+ with open(file_path, "r") as json_file:
155
+ content = json.load(json_file)
156
+ return (file_name[:-5], content)
157
+
158
+ files = os.listdir(output_dir)
159
+ with ThreadPoolExecutor(max_workers=64) as executor:
160
+ combined_contents = list(tqdm(executor.map(combine_json, files), total=len(files)))
 
 
 
 
 
 
 
 
 
 
161
 
162
  # Calculate average score and accuracy
163
  score_sum = 0
164
  count = 0
165
  yes_count = 0
166
  no_count = 0
167
+ for key, result in tqdm(combined_contents):
168
  try:
169
  # Computing score
170
  count += 1
VideoLLaMA2/videollama2/serve/gradio_web_server_adhoc.py CHANGED
@@ -1,6 +1,7 @@
1
- # import spaces
2
 
3
  import os
 
4
 
5
  import torch
6
  import gradio as gr
@@ -79,7 +80,7 @@ class Chat:
79
 
80
  self.model, self.processor, self.tokenizer = model_init(model_path, load_8bit=load_8bit, load_4bit=load_4bit)
81
 
82
- # @spaces.GPU(duration=120)
83
  @torch.inference_mode()
84
  def generate(self, data: list, message, temperature, top_p, max_output_tokens):
85
  # TODO: support multiple turns of conversation.
@@ -95,41 +96,62 @@ class Chat:
95
  return response
96
 
97
 
98
- # @spaces.GPU(duration=120)
99
  def generate(image, video, message, chatbot, textbox_in, temperature, top_p, max_output_tokens, dtype=torch.float16):
100
  data = []
101
 
102
- image = image if image else "none"
103
- video = video if video else "none"
104
- assert not (os.path.exists(image) and os.path.exists(video))
105
-
106
  processor = handler.processor
107
- if os.path.exists(image) and not os.path.exists(video):
108
- data.append((processor['image'](image).to(handler.model.device, dtype=dtype), '<image>'))
109
- if not os.path.exists(image) and os.path.exists(video):
110
- data.append((processor['video'](video).to(handler.model.device, dtype=dtype), '<video>'))
111
- if os.path.exists(image) and os.path.exists(video):
112
- raise NotImplementedError("Not support image and video at the same time")
 
 
 
 
 
 
113
 
114
  assert len(message) % 2 == 0, "The message should be a pair of user and system message."
115
 
116
- message.append({'role': 'user', 'content': textbox_in})
117
- text_en_out = handler.generate(data, message, temperature=temperature, top_p=top_p, max_output_tokens=max_output_tokens)
118
- message.append({'role': 'assistant', 'content': text_en_out})
119
-
120
  show_images = ""
121
- if os.path.exists(image):
122
  show_images += f'<img src="./file={image}" style="display: inline-block;width: 250px;max-height: 400px;">'
123
- if os.path.exists(video):
124
  show_images += f'<video controls playsinline width="500" style="display: inline-block;" src="./file={video}"></video>'
125
 
126
- chatbot.append([textbox_in + "\n" + show_images, text_en_out])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
127
 
128
- return (
129
- gr.update(value=image if os.path.exists(image) else None, interactive=True),
130
- gr.update(value=video if os.path.exists(video) else None, interactive=True),
131
- message,
132
- chatbot)
133
 
134
 
135
  def regenerate(message, chatbot):
@@ -147,7 +169,7 @@ def clear_history(message, chatbot):
147
 
148
 
149
  # BUG of Zero Environment
150
- # 1. The environment is fixed to torch==2.0.1+cu117, gradio>=4.x.x
151
  # 2. The operation or tensor which requires cuda are limited in those functions wrapped via spaces.GPU
152
  # 3. The function can't return tensor or other cuda objects.
153
 
 
1
+ import spaces
2
 
3
  import os
4
+ import re
5
 
6
  import torch
7
  import gradio as gr
 
80
 
81
  self.model, self.processor, self.tokenizer = model_init(model_path, load_8bit=load_8bit, load_4bit=load_4bit)
82
 
83
+ @spaces.GPU(duration=120)
84
  @torch.inference_mode()
85
  def generate(self, data: list, message, temperature, top_p, max_output_tokens):
86
  # TODO: support multiple turns of conversation.
 
96
  return response
97
 
98
 
99
+ @spaces.GPU(duration=120)
100
  def generate(image, video, message, chatbot, textbox_in, temperature, top_p, max_output_tokens, dtype=torch.float16):
101
  data = []
102
 
 
 
 
 
103
  processor = handler.processor
104
+ try:
105
+ if image is not None:
106
+ data.append((processor['image'](image).to(handler.model.device, dtype=dtype), '<image>'))
107
+ elif video is not None:
108
+ data.append((processor['video'](video).to(handler.model.device, dtype=dtype), '<video>'))
109
+ elif image is None and video is None:
110
+ data.append((None, '<text>'))
111
+ else:
112
+ raise NotImplementedError("Not support image and video at the same time")
113
+ except Exception as e:
114
+ traceback.print_exc()
115
+ return gr.update(value=None, interactive=True), gr.update(value=None, interactive=True), message, chatbot
116
 
117
  assert len(message) % 2 == 0, "The message should be a pair of user and system message."
118
 
 
 
 
 
119
  show_images = ""
120
+ if image is not None:
121
  show_images += f'<img src="./file={image}" style="display: inline-block;width: 250px;max-height: 400px;">'
122
+ if video is not None:
123
  show_images += f'<video controls playsinline width="500" style="display: inline-block;" src="./file={video}"></video>'
124
 
125
+ one_turn_chat = [textbox_in, None]
126
+
127
+ # 1. first run case
128
+ if len(chatbot) == 0:
129
+ one_turn_chat[0] += "\n" + show_images
130
+ # 2. not first run case
131
+ else:
132
+ previous_image = re.findall(r'<img src="./file=(.+?)"', chatbot[0][0])
133
+ previous_video = re.findall(r'<video controls playsinline width="500" style="display: inline-block;" src="./file=(.+?)"', chatbot[0][0])
134
+ if len(previous_image) > 0:
135
+ previous_image = previous_image[0]
136
+ # 2.1 new image append or pure text input will start a new conversation
137
+ if previous_image != image:
138
+ message.clear()
139
+ one_turn_chat[0] += "\n" + show_images if image is not None else ""
140
+ elif len(previous_video) > 0:
141
+ previous_video = previous_video[0]
142
+ # 2.2 new video append or pure text input will start a new conversation
143
+ if previous_video != video:
144
+ message.clear()
145
+ one_turn_chat[0] += "\n" + show_images if video is not None else ""
146
+
147
+ message.append({'role': 'user', 'content': textbox_in})
148
+ text_en_out = handler.generate(data, message, temperature=temperature, top_p=top_p, max_output_tokens=max_output_tokens)
149
+ message.append({'role': 'assistant', 'content': text_en_out})
150
+
151
+ one_turn_chat[1] = text_en_out
152
+ chatbot.append(one_turn_chat)
153
 
154
+ return gr.update(value=image, interactive=True), gr.update(value=video, interactive=True), message, chatbot
 
 
 
 
155
 
156
 
157
  def regenerate(message, chatbot):
 
169
 
170
 
171
  # BUG of Zero Environment
172
+ # 1. The environment is fixed to torch>=2.0,<=2.2, gradio>=4.x.x
173
  # 2. The operation or tensor which requires cuda are limited in those functions wrapped via spaces.GPU
174
  # 3. The function can't return tensor or other cuda objects.
175
 
app.py CHANGED
@@ -1,6 +1,7 @@
1
  import spaces
2
 
3
  import os
 
4
 
5
  import torch
6
  import gradio as gr
@@ -19,7 +20,6 @@ title_markdown = ("""
19
  <div>
20
  <h1 >VideoLLaMA 2: Advancing Spatial-Temporal Modeling and Audio Understanding in Video-LLMs</h1>
21
  <h5 style="margin: 0;">If this demo please you, please give us a star ⭐ on Github or πŸ’– on this space.</h5>
22
- <h6 style="margin: 0;">Note that the current demo only supports <b>vision input</b> and <b>single-turn conversation</b>. More features will be available soon.</h6>
23
  </div>
24
  </div>
25
 
@@ -100,37 +100,58 @@ class Chat:
100
  def generate(image, video, message, chatbot, textbox_in, temperature, top_p, max_output_tokens, dtype=torch.float16):
101
  data = []
102
 
103
- image = image if image else "none"
104
- video = video if video else "none"
105
- assert not (os.path.exists(image) and os.path.exists(video))
106
-
107
  processor = handler.processor
108
- if os.path.exists(image) and not os.path.exists(video):
109
- data.append((processor['image'](image).to(handler.model.device, dtype=dtype), '<image>'))
110
- if not os.path.exists(image) and os.path.exists(video):
111
- data.append((processor['video'](video).to(handler.model.device, dtype=dtype), '<video>'))
112
- if os.path.exists(image) and os.path.exists(video):
113
- raise NotImplementedError("Not support image and video at the same time")
 
 
 
 
 
 
114
 
115
  assert len(message) % 2 == 0, "The message should be a pair of user and system message."
116
 
117
- message.append({'role': 'user', 'content': textbox_in})
118
- text_en_out = handler.generate(data, message, temperature=temperature, top_p=top_p, max_output_tokens=max_output_tokens)
119
- message.append({'role': 'assistant', 'content': text_en_out})
120
-
121
  show_images = ""
122
- if os.path.exists(image):
123
  show_images += f'<img src="./file={image}" style="display: inline-block;width: 250px;max-height: 400px;">'
124
- if os.path.exists(video):
125
  show_images += f'<video controls playsinline width="500" style="display: inline-block;" src="./file={video}"></video>'
126
 
127
- chatbot.append([textbox_in + "\n" + show_images, text_en_out])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
128
 
129
- return (
130
- gr.update(value=image if os.path.exists(image) else None, interactive=True),
131
- gr.update(value=video if os.path.exists(video) else None, interactive=True),
132
- message,
133
- chatbot)
134
 
135
 
136
  def regenerate(message, chatbot):
@@ -148,26 +169,25 @@ def clear_history(message, chatbot):
148
 
149
 
150
  # BUG of Zero Environment
151
- # 1. The environment is fixed to torch==2.0.1+cu117, gradio>=4.x.x
152
  # 2. The operation or tensor which requires cuda are limited in those functions wrapped via spaces.GPU
153
  # 3. The function can't return tensor or other cuda objects.
154
 
155
- conv_mode = "llama_2"
156
  model_path = 'DAMO-NLP-SG/VideoLLaMA2-7B-16F'
157
 
158
- device = torch.device("cuda")
159
-
160
  handler = Chat(model_path, load_8bit=False, load_4bit=True)
161
 
162
  textbox = gr.Textbox(show_label=False, placeholder="Enter text and press ENTER", container=False)
163
 
164
  theme = gr.themes.Default(primary_hue=plum_color)
 
165
  theme.set(slider_color="#9C276A")
166
  theme.set(block_title_text_color="#9C276A")
167
  theme.set(block_label_text_color="#9C276A")
168
  theme.set(button_primary_text_color="#9C276A")
169
  # theme.set(button_secondary_text_color="*neutral_800")
170
 
 
171
  with gr.Blocks(title='VideoLLaMA 2 πŸ”₯πŸš€πŸ”₯', theme=theme, css=block_css) as demo:
172
  gr.Markdown(title_markdown)
173
  message = gr.State([])
@@ -235,16 +255,16 @@ with gr.Blocks(title='VideoLLaMA 2 πŸ”₯πŸš€πŸ”₯', theme=theme, css=block_css) as
235
  gr.Examples(
236
  examples=[
237
  [
238
- f"{cur_dir}/examples/sora.png",
239
  "What happens in this image?",
240
  ],
241
  [
242
  f"{cur_dir}/examples/waterview.jpg",
243
- "What should I be cautious about when I visit the scenic area in this image?",
244
  ],
245
  [
246
  f"{cur_dir}/examples/desert.jpg",
247
- "If there are factual errors in the questions, point them out; if not, proceed to answer the following question. What’s happening in the desert?",
248
  ],
249
  ],
250
  inputs=[image, textbox],
@@ -253,22 +273,22 @@ with gr.Blocks(title='VideoLLaMA 2 πŸ”₯πŸš€πŸ”₯', theme=theme, css=block_css) as
253
  gr.Examples(
254
  examples=[
255
  [
256
- f"{cur_dir}/examples/rap.mp4",
257
  "What happens in this video?",
258
  ],
259
  [
260
- f"{cur_dir}/examples/demo2.mp4",
261
- "Do you think it's morning or night in this video? Why?",
262
  ],
263
  [
264
- f"{cur_dir}/examples/demo3.mp4",
265
- "At the intersection, in which direction does the red car turn?",
266
  ],
267
  ],
268
  inputs=[video, textbox],
269
  )
270
 
271
- # gr.Markdown(tos_markdown)
272
  gr.Markdown(learn_more_markdown)
273
 
274
  submit_btn.click(
 
1
  import spaces
2
 
3
  import os
4
+ import re
5
 
6
  import torch
7
  import gradio as gr
 
20
  <div>
21
  <h1 >VideoLLaMA 2: Advancing Spatial-Temporal Modeling and Audio Understanding in Video-LLMs</h1>
22
  <h5 style="margin: 0;">If this demo please you, please give us a star ⭐ on Github or πŸ’– on this space.</h5>
 
23
  </div>
24
  </div>
25
 
 
100
  def generate(image, video, message, chatbot, textbox_in, temperature, top_p, max_output_tokens, dtype=torch.float16):
101
  data = []
102
 
 
 
 
 
103
  processor = handler.processor
104
+ try:
105
+ if image is not None:
106
+ data.append((processor['image'](image).to(handler.model.device, dtype=dtype), '<image>'))
107
+ elif video is not None:
108
+ data.append((processor['video'](video).to(handler.model.device, dtype=dtype), '<video>'))
109
+ elif image is None and video is None:
110
+ data.append((None, '<text>'))
111
+ else:
112
+ raise NotImplementedError("Not support image and video at the same time")
113
+ except Exception as e:
114
+ traceback.print_exc()
115
+ return gr.update(value=None, interactive=True), gr.update(value=None, interactive=True), message, chatbot
116
 
117
  assert len(message) % 2 == 0, "The message should be a pair of user and system message."
118
 
 
 
 
 
119
  show_images = ""
120
+ if image is not None:
121
  show_images += f'<img src="./file={image}" style="display: inline-block;width: 250px;max-height: 400px;">'
122
+ if video is not None:
123
  show_images += f'<video controls playsinline width="500" style="display: inline-block;" src="./file={video}"></video>'
124
 
125
+ one_turn_chat = [textbox_in, None]
126
+
127
+ # 1. first run case
128
+ if len(chatbot) == 0:
129
+ one_turn_chat[0] += "\n" + show_images
130
+ # 2. not first run case
131
+ else:
132
+ previous_image = re.findall(r'<img src="./file=(.+?)"', chatbot[0][0])
133
+ previous_video = re.findall(r'<video controls playsinline width="500" style="display: inline-block;" src="./file=(.+?)"', chatbot[0][0])
134
+ if len(previous_image) > 0:
135
+ previous_image = previous_image[0]
136
+ # 2.1 new image append or pure text input will start a new conversation
137
+ if previous_image != image:
138
+ message.clear()
139
+ one_turn_chat[0] += "\n" + show_images if image is not None else ""
140
+ elif len(previous_video) > 0:
141
+ previous_video = previous_video[0]
142
+ # 2.2 new video append or pure text input will start a new conversation
143
+ if previous_video != video:
144
+ message.clear()
145
+ one_turn_chat[0] += "\n" + show_images if video is not None else ""
146
+
147
+ message.append({'role': 'user', 'content': textbox_in})
148
+ text_en_out = handler.generate(data, message, temperature=temperature, top_p=top_p, max_output_tokens=max_output_tokens)
149
+ message.append({'role': 'assistant', 'content': text_en_out})
150
 
151
+ one_turn_chat[1] = text_en_out
152
+ chatbot.append(one_turn_chat)
153
+
154
+ return gr.update(value=image, interactive=True), gr.update(value=video, interactive=True), message, chatbot
 
155
 
156
 
157
  def regenerate(message, chatbot):
 
169
 
170
 
171
  # BUG of Zero Environment
172
+ # 1. The environment is fixed to torch>=2.0,<=2.2, gradio>=4.x.x
173
  # 2. The operation or tensor which requires cuda are limited in those functions wrapped via spaces.GPU
174
  # 3. The function can't return tensor or other cuda objects.
175
 
 
176
  model_path = 'DAMO-NLP-SG/VideoLLaMA2-7B-16F'
177
 
 
 
178
  handler = Chat(model_path, load_8bit=False, load_4bit=True)
179
 
180
  textbox = gr.Textbox(show_label=False, placeholder="Enter text and press ENTER", container=False)
181
 
182
  theme = gr.themes.Default(primary_hue=plum_color)
183
+ # theme.update_color("primary", plum_color.c500)
184
  theme.set(slider_color="#9C276A")
185
  theme.set(block_title_text_color="#9C276A")
186
  theme.set(block_label_text_color="#9C276A")
187
  theme.set(button_primary_text_color="#9C276A")
188
  # theme.set(button_secondary_text_color="*neutral_800")
189
 
190
+
191
  with gr.Blocks(title='VideoLLaMA 2 πŸ”₯πŸš€πŸ”₯', theme=theme, css=block_css) as demo:
192
  gr.Markdown(title_markdown)
193
  message = gr.State([])
 
255
  gr.Examples(
256
  examples=[
257
  [
258
+ f"{cur_dir}/examples/extreme_ironing.jpg",
259
  "What happens in this image?",
260
  ],
261
  [
262
  f"{cur_dir}/examples/waterview.jpg",
263
+ "What are the things I should be cautious about when I visit here?",
264
  ],
265
  [
266
  f"{cur_dir}/examples/desert.jpg",
267
+ "If there are factual errors in the questions, point it out; if not, proceed answering the question. What’s happening in the desert?",
268
  ],
269
  ],
270
  inputs=[image, textbox],
 
273
  gr.Examples(
274
  examples=[
275
  [
276
+ f"{cur_dir}/../../assets/cat_and_chicken.mp4",
277
  "What happens in this video?",
278
  ],
279
  [
280
+ f"{cur_dir}/../../assets/sora.mp4",
281
+ "Please describe this video.",
282
  ],
283
  [
284
+ f"{cur_dir}/examples/sample_demo_1.mp4",
285
+ "What does the baby do?",
286
  ],
287
  ],
288
  inputs=[video, textbox],
289
  )
290
 
291
+ gr.Markdown(tos_markdown)
292
  gr.Markdown(learn_more_markdown)
293
 
294
  submit_btn.click(