import os import re import math import json import argparse import warnings import torch import decord import numpy as np import transformers from PIL import Image from tqdm import tqdm from decord import VideoReader, cpu from torch.utils.data import Dataset, DataLoader from torchvision import transforms as T from torchvision.transforms import functional as F import sys sys.path.append('./') from videollama2.conversation import conv_templates, SeparatorStyle from videollama2.constants import NUM_FRAMES, DEFAULT_MMODAL_TOKEN, DEFAULT_MMODAL_START_TOKEN, DEFAULT_MMODAL_END_TOKEN, MMODAL_TOKEN_INDEX from videollama2.mm_utils import get_model_name_from_path, tokenizer_MMODAL_token, KeywordsStoppingCriteria, process_videos, expand2square from videollama2.model.builder import load_pretrained_model # NOTE: Ignore TypedStorage warning, which refers to this link~(https://github.com/pytorch/pytorch/issues/97207#issuecomment-1494781560) warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated') default_mm_token = DEFAULT_MMODAL_TOKEN["VIDEO"] default_mm_start_token = DEFAULT_MMODAL_START_TOKEN["VIDEO"] default_mm_end_token = DEFAULT_MMODAL_END_TOKEN["VIDEO"] modal_token_index = MMODAL_TOKEN_INDEX["VIDEO"] def split_list(lst, n): """Split a list into n (roughly) equal-sized chunks""" chunk_size = math.ceil(len(lst) / n) # integer division return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)] def get_chunk(lst, n, k): chunks = split_list(lst, n) return chunks[k] class MVBenchDataset(Dataset): def __init__(self, data_list, processor, num_segments=8): self.data_list = data_list self.decord_method = { 'video': self.read_video, 'gif': self.read_gif, 'frame': self.read_frame, } self.processor = processor self.num_segments = num_segments def __str__(self): len_list = {} option_list = {} for data in self.data_list: if data['task_type'] not in len_list: len_list[data['task_type']] = 0 len_list[data['task_type']] += 1 if data['task_type'] not in option_list: option_list[data['task_type']] = 0 option_list[data['task_type']] += len(data['data']['candidates']) correct = 0 total = 0 res = f"There are {len(self.data_list)} videos as follow:\n" for k, v in len_list.items(): correct += len_list[k] total += option_list[k] res += f"{v} for {k} ({option_list[k]} options => {len_list[k]/option_list[k]*100:.2f}%)\n" correct = correct + 1 / option_list[k] res += f"Total random accuracy: {correct/total*100:.2f}%" return res.rstrip() def __len__(self): return len(self.data_list) def get_index(self, bound, fps, max_frame, first_idx=0): if bound: start, end = bound[0], bound[1] else: start, end = -100000, 100000 start_idx = max(first_idx, round(start * fps)) end_idx = min(round(end * fps), max_frame) seg_size = float(end_idx - start_idx) / self.num_segments frame_indices = np.array([ int(start_idx + (seg_size / 2) + np.round(seg_size * idx)) for idx in range(self.num_segments) ]) return frame_indices def read_video(self, video_path, bound=None): vr = VideoReader(video_path, ctx=cpu(0), num_threads=1) max_frame = len(vr) - 1 fps = float(vr.get_avg_fps()) images_group = list() frame_indices = self.get_index(bound, fps, max_frame, first_idx=0) for frame_index in frame_indices: img = Image.fromarray(vr[frame_index].asnumpy()) images_group.append(img) # images_group = [expand2square(img, tuple(int(x*255) for x in self.processor.image_mean)) for img in images_group] torch_imgs = self.processor(images_group, return_tensors='pt')['pixel_values'] return torch_imgs def read_gif(self, video_path, bound=None, fps=25): gif = imageio.get_reader(video_path) max_frame = len(gif) - 1 images_group = list() frame_indices = self.get_index(bound, fps, max_frame, first_idx=0) for index, frame in enumerate(gif): if index in frame_indices: img = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB) img = Image.fromarray(img) images_group.append(img) # images_group = [expand2square(img, tuple(int(x*255) for x in self.processor.image_mean)) for img in images_group] torch_imgs = self.processor(images_group, return_tensors='pt')['pixel_values'] return torch_imgs def read_frame(self, video_path, bound=None, fps=3): max_frame = len(os.listdir(video_path)) images_group = list() frame_indices = self.get_index(bound, fps, max_frame, first_idx=1) # frame_idx starts from 1 for frame_index in frame_indices: img = Image.open(os.path.join(video_path, f"{frame_index:05d}.jpg")) images_group.append(img) # images_group = [expand2square(img, tuple(int(x*255) for x in self.processor.image_mean)) for img in images_group] torch_imgs = self.processor.preprocess(images_group, return_tensors='pt')['pixel_values'] return torch_imgs def qa_template(self, data): question = f"Question: {data['question']}\n" question += "Options:\n" answer = data['answer'] answer_idx = -1 for idx, c in enumerate(data['candidates']): question += f"({chr(ord('A') + idx)}) {c}\n" if c == answer: answer_idx = idx question = question.rstrip() answer = f"({chr(ord('A') + answer_idx)}) {answer}" return question, answer def __getitem__(self, idx): decord_method = self.decord_method[self.data_list[idx]['data_type']] bound = None if self.data_list[idx]['bound']: bound = ( self.data_list[idx]['data']['start'], self.data_list[idx]['data']['end'], ) video_path = os.path.join(self.data_list[idx]['prefix'], self.data_list[idx]['data']['video']) torch_imgs = decord_method(video_path, bound) question = self.data_list[idx]['data']['question'] options = self.data_list[idx]['data']['candidates'] answer = self.data_list[idx]['data']['answer'] task_type = self.data_list[idx]['task_type'] # question, answer = self.qa_template(self.data_list[idx]['data']) answer_idx = -1 letters = [] options_string = '' for option_idx, c in enumerate(options): letters.append(f"{chr(ord('A') + option_idx)}") options_string += f"({chr(ord('A') + option_idx)}) {c}\n" if c == answer: answer_idx = option_idx option_question = f'Question: {question}\nOptions:\n{options_string}Answer with the option\'s letter from the given choices directly and only give the best option.' return { 'video': torch_imgs, 'video_path': video_path, 'question': option_question, 'letters': ','.join(letters), 'answer_idx': answer_idx, 'task_type': task_type } tasks = { "Action Sequence": ("action_sequence.json", "star/Charades_v1_480/", "video", True), # has start & end "Action Prediction": ("action_prediction.json", "star/Charades_v1_480/", "video", True), # has start & end "Action Antonym": ("action_antonym.json", "ssv2_video/", "video", False), "Fine-grained Action": ("fine_grained_action.json", "Moments_in_Time_Raw/videos/", "video", False), "Unexpected Action": ("unexpected_action.json", "FunQA_test/test/", "video", False), "Object Existence": ("object_existence.json", "clevrer/video_validation/", "video", False), "Object Interaction": ("object_interaction.json", "star/Charades_v1_480/", "video", True), # has start & end "Object Shuffle": ("object_shuffle.json", "perception/videos/", "video", False), "Moving Direction": ("moving_direction.json", "clevrer/video_validation/", "video", False), "Action Localization": ("action_localization.json", "sta/sta_video/", "video", True), # has start & end "Scene Transition": ("scene_transition.json", "scene_qa/video/", "video", False), "Action Count": ("action_count.json", "perception/videos/", "video", False), "Moving Count": ("moving_count.json", "clevrer/video_validation/", "video", False), "Moving Attribute": ("moving_attribute.json", "clevrer/video_validation/", "video", False), "State Change": ("state_change.json", "perception/videos/", "video", False), "Fine-grained Pose": ("fine_grained_pose.json", "nturgbd/", "video", False), "Character Order": ("character_order.json", "perception/videos/", "video", False), "Egocentric Navigation": ("egocentric_navigation.json", "vlnqa/", "video", False), "Episodic Reasoning": ("episodic_reasoning.json", "tvqa/frames_fps3_hq/", "frame", True), # has start & end, read frame "Counterfactual Inference": ("counterfactual_inference.json", "clevrer/video_validation/", "video", False), } def build_mvbench_eval(args, processor, num_frames): data_list = [] for task_name, task in tasks.items(): json_file = os.path.join(args.question_file, task[0]) vis_folder = os.path.join(args.video_folder, task[1]) with open(json_file, 'r') as f: json_data = json.load(f) for data in json_data: data_list.append({ 'task_type': task_name, 'prefix': vis_folder, 'data_type': task[2], 'bound': task[3], 'data': data }) data_list = get_chunk(data_list, args.num_chunks, args.chunk_idx) dataset = MVBenchDataset(data_list, processor, num_segments=num_frames) dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers) return dataloader def mvbench_dump(ans_file, line, outputs): for idx, output in enumerate(outputs): vid = line['video_path'][idx] task_type = line['task_type'][idx] letters = line['letters'][idx].split(',') answer_idx = line['answer_idx'][idx].item() pred_answer = re.findall(f'[\(,\ ]*[{letters[0]}-{letters[-1]}][\),\ ]*', output) if len(pred_answer) == 0: pred_idx = (answer_idx + 1) % len(letters) else: pred_answer = pred_answer[0].strip() if pred_answer.startswith('('): pred_answer = pred_answer.strip('()') pred_idx = letters.index(pred_answer) ans_file.write(json.dumps({"vid": vid, "task_type": task_type, "pred": pred_idx, "gt": answer_idx}) + '\n') class NextoeDataset(Dataset): video_formats = ['.mp4', '.avi', '.mov', '.mkv'] def __init__(self, data_list, processor, num_segments=8): self.data_list = data_list self.processor = processor self.num_segments = num_segments def __len__(self): return len(self.data_list) def __getitem__(self, idx): line = self.data_list[idx] video_name = line['video'] question = line['question'] answer = line['answer'] for fmt in self.video_formats: # Added this line temp_path = os.path.join(args.video_folder, f"{video_name}{fmt}") if os.path.exists(temp_path): video_path = temp_path break decord_vr = VideoReader(uri=video_path, ctx=cpu(0)) frames = decord_vr.get_batch(np.linspace(0, len(decord_vr) - 1, 8, dtype=int)).asnumpy() video_tensor = self.processor.preprocess(frames, return_tensors='pt')['pixel_values'] # do not pad for video frames wrapped_question = f'Question: {question}\nAnswer the question using a single word or a short phrase with multiple words.' return { 'video': video_tensor, 'question': wrapped_question, 'answer': answer, 'qid': line['qid'] } def build_nextoe_eval(args, processor, num_frames): questions = json.load(open(args.question_file, "r")) questions = get_chunk(questions, args.num_chunks, args.chunk_idx) dataset = NextoeDataset(questions, processor, num_segments=num_frames) dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers) return dataloader def nextoe_dump(ans_file, line, outputs): for idx, output in enumerate(outputs): vid, qid = line['qid'][idx].split('_') ans_file.write(json.dumps({"vid": vid, "qid": qid, "prediction": output}) + '\n') class NextqaDataset(Dataset): video_formats = ['.mp4', '.avi', '.mov', '.mkv'] def __init__(self, data_list, processor, num_segments=8): self.data_list = data_list self.processor = processor self.num_segments = num_segments def __len__(self): return len(self.data_list) def __getitem__(self, idx): line = self.data_list[idx] video_name = line['video'] question = line['question'] answer = line['answer'] for fmt in self.video_formats: # Added this line temp_path = os.path.join(args.video_folder, f"{video_name}{fmt}") if os.path.exists(temp_path): video_path = temp_path break decord_vr = VideoReader(uri=video_path, ctx=cpu(0)) frames = decord_vr.get_batch(np.linspace(0, len(decord_vr) - 1, 8, dtype=int)).asnumpy() video_tensor = self.processor.preprocess(frames, return_tensors='pt')['pixel_values'] # do not pad for video frames assert line['num_option'] == 5 a0 = line['a0'] a1 = line['a1'] a2 = line['a2'] a3 = line['a3'] a4 = line['a4'] option_question = f'Question: {question}\nOptions:\n(A) {a0}\n(B) {a1}\n(C) {a2}\n(D) {a3}\n(E) {a4}\nAnswer with the option\'s letter from the given choices directly and only give the best option.' return { 'video': video_tensor, 'question': option_question, 'answer': answer, 'qid': line['qid'] } def build_nextqa_eval(args, processor, num_frames): questions = json.load(open(args.question_file, "r")) questions = get_chunk(questions, args.num_chunks, args.chunk_idx) dataset = NextqaDataset(questions, processor, num_segments=num_frames) dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers) return dataloader def nextqa_dump(ans_file, line, outputs): for idx, output in enumerate(outputs): qid = line['qid'][idx] answer = line['answer'][idx].item() letters = ['A', 'B', 'C', 'D', 'E'] pred_answer = re.findall('[\(,\ ]*[A-E][\),\ ]*', output) if len(pred_answer) == 0: pred_idx = 2 else: pred_answer = pred_answer[0].strip() if pred_answer.startswith('('): pred_answer = pred_answer.strip('()') pred_idx = letters.index(pred_answer) ans_file.write(json.dumps({"id": qid, "prediction": pred_idx, "answer": answer}) + '\n') class EgoschemaDataset(Dataset): video_formats = ['.mp4', '.avi', '.mov', '.mkv'] def __init__(self, data_list, processor, num_segments=8): self.data_list = data_list self.processor = processor self.num_segments = num_segments def __len__(self): return len(self.data_list) def __getitem__(self, idx): line = self.data_list[idx] q_uid = line['q_uid'] for fmt in self.video_formats: # Added this line temp_path = os.path.join(args.video_folder, f"{q_uid}{fmt}") if os.path.exists(temp_path): video_path = temp_path break decord_vr = VideoReader(uri=video_path, ctx=cpu(0)) frames = decord_vr.get_batch(np.linspace(0, len(decord_vr) - 1, self.num_segments, dtype=int)).asnumpy() video_tensor = self.processor.preprocess(frames, return_tensors='pt')['pixel_values'] # do not pad for video frames question = line['question'] a0 = line['option 0'] a1 = line['option 1'] a2 = line['option 2'] a3 = line['option 3'] a4 = line['option 4'] axs = [a0, a1, a2, a3, a4] ops = ['(A)', '(B)', '(C)', '(D)', '(E)'] option_question = f'Question: {question}\nOptions:\n(A) {a0}\n(B) {a1}\n(C) {a2}\n(D) {a3}\n(E) {a4}\n.Answer with the option\'s letter from the given choices directly and only give the best option.' return { 'q_uid': q_uid, 'video': video_tensor, 'question': option_question, } def build_egoschema_eval(args, processor, num_frames): questions = json.load(open(args.question_file, "r")) questions = get_chunk(questions, args.num_chunks, args.chunk_idx) dataset = EgoschemaDataset(questions, processor, num_segments=num_frames) dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers) return dataloader def egoschema_dump(ans_file, line, outputs): for idx, output in enumerate(outputs): q_uid = line['q_uid'][idx] letters = ['A', 'B', 'C', 'D', 'E'] pred_answer = re.findall('[\(\ ]*[A-E][\)\ ]*', output) if len(pred_answer) == 0: pred_idx = 2 else: pred_answer = pred_answer[0].strip() # if pred_answer.startswith('('): pred_answer = pred_answer.strip('()') pred_idx = letters.index(pred_answer) ans_file.write(f'{q_uid}, {pred_idx}\n') def get_model_output(model, video_tensor, tokenizer, questions, conv_mode="v1", device='cuda'): input_ids = [] modal_list = [] for qs in questions: if model.config.mm_use_im_start_end: qs = default_mm_start_token + default_mm_token + default_mm_end_token + "\n" + qs else: qs = default_mm_token + "\n" + qs conv = conv_templates[conv_mode].copy() conv.append_message(conv.roles[0], qs) conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() input_id = tokenizer_MMODAL_token(prompt, tokenizer, modal_token_index, return_tensors='pt') input_ids.append(input_id) modal_list.append("video") # left pad sequence input_ids = torch.nn.utils.rnn.pad_sequence( [x.flip(dims=[0]) for x in input_ids], batch_first=True, padding_value=tokenizer.pad_token_id).flip(dims=[1]).to(device) attention_mask=input_ids.ne(tokenizer.pad_token_id).to(device) video_tensor = video_tensor.half().to(args.device) with torch.inference_mode(): output_ids = model.generate( input_ids, attention_mask=attention_mask, images_or_videos=video_tensor, modal_list=modal_list, do_sample=False, max_new_tokens=1024, use_cache=True, pad_token_id=tokenizer.eos_token_id) outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True) return outputs def run_inference(args): """ Run inference on ActivityNet QA DataSet using the Video-ChatGPT model. Args: args: Command-line arguments. """ # Initialize the model model_name = get_model_name_from_path(args.model_path) tokenizer, model, processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name) num_frames = model.config.num_frames if hasattr(model.config, "num_frames") else NUM_FRAMES answer_file = os.path.expanduser(args.answer_file) os.makedirs(os.path.dirname(answer_file), exist_ok=True) ans_file = open(answer_file, "w") output_list = [] # List to store the output results if args.dataset == 'mvbench': val_loader = build_mvbench_eval(args, processor, num_frames) elif args.dataset == 'nextoe': val_loader = build_nextoe_eval(args, processor, num_frames) elif args.dataset == 'nextqa': val_loader = build_nextqa_eval(args, processor, num_frames) elif args.dataset == 'egoschema': val_loader = build_egoschema_eval(args, processor, num_frames) else: raise NotImplementedError(f"Dataset {args.dataset} not implemented.") # Iterate over each sample in the ground truth file for i, line in enumerate(tqdm(val_loader)): video_tensor = line['video'] questions = line['question'] outputs = get_model_output(model, video_tensor, tokenizer, questions, args.conv_mode, args.device) if args.dataset == 'mvbench': mvbench_dump(ans_file, line, outputs) elif args.dataset == 'nextoe': nextoe_dump(ans_file, line, outputs) elif args.dataset == 'nextqa': nextqa_dump(ans_file, line, outputs) elif args.dataset == 'egoschema': egoschema_dump(ans_file, line, outputs) else: raise NotImplementedError(f"Dataset {args.dataset} not implemented.") ans_file.close() if __name__ == "__main__": parser = argparse.ArgumentParser(description='Multiple-Choice Video QA Evaluation Script.') parser.add_argument('--dataset', help='Dataset to evaluate on.', required=True) parser.add_argument('--model-path', help='', required=True) parser.add_argument('--model_base', help='', default=None, type=str, required=False) parser.add_argument('--video-folder', help='Directory containing video files.', required=True) parser.add_argument('--question-file', help='Path to the ground truth file containing question.', required=True) parser.add_argument('--answer-file', help='Path to the ground truth file containing answers.', required=True) parser.add_argument("--conv-mode", type=str, default="llava_v1") parser.add_argument("--num-chunks", type=int, default=1) parser.add_argument("--chunk-idx", type=int, default=0) parser.add_argument("--device", type=str, required=False, default='cuda:0') parser.add_argument("--model_max_length", type=int, required=False, default=2048) parser.add_argument("--batch-size", type=int, default=1) parser.add_argument("--num-workers", type=int, default=8) args = parser.parse_args() run_inference(args)