Spaces:
Running
on
Zero
Running
on
Zero
# This code is modified from https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/paddlespeech/t2s/frontend/g2pw | |
# This code is modified from https://github.com/GitYCC/g2pW | |
import warnings | |
warnings.filterwarnings("ignore") | |
import json | |
import os | |
import zipfile,requests | |
from typing import Any | |
from typing import Dict | |
from typing import List | |
from typing import Tuple | |
import numpy as np | |
import onnxruntime | |
onnxruntime.set_default_logger_severity(3) | |
from opencc import OpenCC | |
from transformers import AutoTokenizer | |
from pypinyin import pinyin | |
from pypinyin import Style | |
from .dataset import get_char_phoneme_labels | |
from .dataset import get_phoneme_labels | |
from .dataset import prepare_onnx_input | |
from .utils import load_config | |
from ..zh_normalization.char_convert import tranditional_to_simplified | |
model_version = '1.1' | |
def predict(session, onnx_input: Dict[str, Any], | |
labels: List[str]) -> Tuple[List[str], List[float]]: | |
all_preds = [] | |
all_confidences = [] | |
probs = session.run([], { | |
"input_ids": onnx_input['input_ids'], | |
"token_type_ids": onnx_input['token_type_ids'], | |
"attention_mask": onnx_input['attention_masks'], | |
"phoneme_mask": onnx_input['phoneme_masks'], | |
"char_ids": onnx_input['char_ids'], | |
"position_ids": onnx_input['position_ids'] | |
})[0] | |
preds = np.argmax(probs, axis=1).tolist() | |
max_probs = [] | |
for index, arr in zip(preds, probs.tolist()): | |
max_probs.append(arr[index]) | |
all_preds += [labels[pred] for pred in preds] | |
all_confidences += max_probs | |
return all_preds, all_confidences | |
def download_and_decompress(model_dir: str='G2PWModel/'): | |
if not os.path.exists(model_dir): | |
parent_directory = os.path.dirname(model_dir) | |
zip_dir = os.path.join(parent_directory,"G2PWModel_1.1.zip") | |
extract_dir = os.path.join(parent_directory,"G2PWModel_1.1") | |
extract_dir_new = os.path.join(parent_directory,"G2PWModel") | |
print("Downloading g2pw model...") | |
modelscope_url = "https://paddlespeech.bj.bcebos.com/Parakeet/released_models/g2p/G2PWModel_1.1.zip" | |
with requests.get(modelscope_url, stream=True) as r: | |
r.raise_for_status() | |
with open(zip_dir, 'wb') as f: | |
for chunk in r.iter_content(chunk_size=8192): | |
if chunk: | |
f.write(chunk) | |
print("Extracting g2pw model...") | |
with zipfile.ZipFile(zip_dir, "r") as zip_ref: | |
zip_ref.extractall(parent_directory) | |
os.rename(extract_dir, extract_dir_new) | |
return model_dir | |
class G2PWOnnxConverter: | |
def __init__(self, | |
model_dir: str='G2PWModel/', | |
style: str='bopomofo', | |
model_source: str=None, | |
enable_non_tradional_chinese: bool=False): | |
uncompress_path = download_and_decompress(model_dir) | |
sess_options = onnxruntime.SessionOptions() | |
sess_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL | |
sess_options.execution_mode = onnxruntime.ExecutionMode.ORT_SEQUENTIAL | |
sess_options.intra_op_num_threads = 2 | |
# self.session_g2pW = onnxruntime.InferenceSession(os.path.join(uncompress_path, 'g2pW.onnx'), sess_options=sess_options, providers=['CPUExecutionProvider']) | |
self.session_g2pW = onnxruntime.InferenceSession(os.path.join(uncompress_path, 'g2pW.onnx'), sess_options=sess_options, providers=['CUDAExecutionProvider','CPUExecutionProvider']) | |
self.config = load_config( | |
config_path=os.path.join(uncompress_path, 'config.py'), | |
use_default=True) | |
self.model_source = model_source if model_source else self.config.model_source | |
self.enable_opencc = enable_non_tradional_chinese | |
self.tokenizer = AutoTokenizer.from_pretrained(self.model_source) | |
polyphonic_chars_path = os.path.join(uncompress_path, | |
'POLYPHONIC_CHARS.txt') | |
monophonic_chars_path = os.path.join(uncompress_path, | |
'MONOPHONIC_CHARS.txt') | |
self.polyphonic_chars = [ | |
line.split('\t') | |
for line in open(polyphonic_chars_path, encoding='utf-8').read() | |
.strip().split('\n') | |
] | |
self.non_polyphonic = { | |
'一', '不', '和', '咋', '嗲', '剖', '差', '攢', '倒', '難', '奔', '勁', '拗', | |
'肖', '瘙', '誒', '泊', '听', '噢' | |
} | |
self.non_monophonic = {'似', '攢'} | |
self.monophonic_chars = [ | |
line.split('\t') | |
for line in open(monophonic_chars_path, encoding='utf-8').read() | |
.strip().split('\n') | |
] | |
self.labels, self.char2phonemes = get_char_phoneme_labels( | |
polyphonic_chars=self.polyphonic_chars | |
) if self.config.use_char_phoneme else get_phoneme_labels( | |
polyphonic_chars=self.polyphonic_chars) | |
self.chars = sorted(list(self.char2phonemes.keys())) | |
self.polyphonic_chars_new = set(self.chars) | |
for char in self.non_polyphonic: | |
if char in self.polyphonic_chars_new: | |
self.polyphonic_chars_new.remove(char) | |
self.monophonic_chars_dict = { | |
char: phoneme | |
for char, phoneme in self.monophonic_chars | |
} | |
for char in self.non_monophonic: | |
if char in self.monophonic_chars_dict: | |
self.monophonic_chars_dict.pop(char) | |
self.pos_tags = [ | |
'UNK', 'A', 'C', 'D', 'I', 'N', 'P', 'T', 'V', 'DE', 'SHI' | |
] | |
with open( | |
os.path.join(uncompress_path, | |
'bopomofo_to_pinyin_wo_tune_dict.json'), | |
'r', | |
encoding='utf-8') as fr: | |
self.bopomofo_convert_dict = json.load(fr) | |
self.style_convert_func = { | |
'bopomofo': lambda x: x, | |
'pinyin': self._convert_bopomofo_to_pinyin, | |
}[style] | |
with open( | |
os.path.join(uncompress_path, 'char_bopomofo_dict.json'), | |
'r', | |
encoding='utf-8') as fr: | |
self.char_bopomofo_dict = json.load(fr) | |
if self.enable_opencc: | |
self.cc = OpenCC('s2tw') | |
def _convert_bopomofo_to_pinyin(self, bopomofo: str) -> str: | |
tone = bopomofo[-1] | |
assert tone in '12345' | |
component = self.bopomofo_convert_dict.get(bopomofo[:-1]) | |
if component: | |
return component + tone | |
else: | |
print(f'Warning: "{bopomofo}" cannot convert to pinyin') | |
return None | |
def __call__(self, sentences: List[str]) -> List[List[str]]: | |
if isinstance(sentences, str): | |
sentences = [sentences] | |
if self.enable_opencc: | |
translated_sentences = [] | |
for sent in sentences: | |
translated_sent = self.cc.convert(sent) | |
assert len(translated_sent) == len(sent) | |
translated_sentences.append(translated_sent) | |
sentences = translated_sentences | |
texts, query_ids, sent_ids, partial_results = self._prepare_data( | |
sentences=sentences) | |
if len(texts) == 0: | |
# sentences no polyphonic words | |
return partial_results | |
onnx_input = prepare_onnx_input( | |
tokenizer=self.tokenizer, | |
labels=self.labels, | |
char2phonemes=self.char2phonemes, | |
chars=self.chars, | |
texts=texts, | |
query_ids=query_ids, | |
use_mask=self.config.use_mask, | |
window_size=None) | |
preds, confidences = predict( | |
session=self.session_g2pW, | |
onnx_input=onnx_input, | |
labels=self.labels) | |
if self.config.use_char_phoneme: | |
preds = [pred.split(' ')[1] for pred in preds] | |
results = partial_results | |
for sent_id, query_id, pred in zip(sent_ids, query_ids, preds): | |
results[sent_id][query_id] = self.style_convert_func(pred) | |
return results | |
def _prepare_data( | |
self, sentences: List[str] | |
) -> Tuple[List[str], List[int], List[int], List[List[str]]]: | |
texts, query_ids, sent_ids, partial_results = [], [], [], [] | |
for sent_id, sent in enumerate(sentences): | |
# pypinyin works well for Simplified Chinese than Traditional Chinese | |
sent_s = tranditional_to_simplified(sent) | |
pypinyin_result = pinyin( | |
sent_s, neutral_tone_with_five=True, style=Style.TONE3) | |
partial_result = [None] * len(sent) | |
for i, char in enumerate(sent): | |
if char in self.polyphonic_chars_new: | |
texts.append(sent) | |
query_ids.append(i) | |
sent_ids.append(sent_id) | |
elif char in self.monophonic_chars_dict: | |
partial_result[i] = self.style_convert_func( | |
self.monophonic_chars_dict[char]) | |
elif char in self.char_bopomofo_dict: | |
partial_result[i] = pypinyin_result[i][0] | |
# partial_result[i] = self.style_convert_func(self.char_bopomofo_dict[char][0]) | |
else: | |
partial_result[i] = pypinyin_result[i][0] | |
partial_results.append(partial_result) | |
return texts, query_ids, sent_ids, partial_results | |